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Introduction

Numerical modeling is a rapidly developing discipline which can be
attributed in part to the general availability of fast, large memory digital
computers. A fast, large memory computer is generally necessary to obtain
the desired resolution from the model results in a reasonable amount of
computer time. Prior to the 1970's access to large, fast computers was
restricted to the larger government or uni versity research laboratories;
however, this type computer is now generally available at most universities.
As a consequence, development and use of state-of-the-art numerical models
are now common within the academic community.

A numerical model basically consists of a numerical algorithm which has
been developed from the differential equations governing the physical phenom-
ena. Several methods exist for developing the numerical algorithm, faIling
generally into two types of formulation; finite difference and finite element.
Finite element techniques are used extensively in solid mechanics but to a
much smaller extent in fluid mechanics. For a variety of reasons finite
difference techniques have gained greater acceptance in hydrodynamic modeling
and will be used exclusively in this treatment of numerical modeling of hydro-
dynamic systems. Hydrodynamic systems is a general term intended to denote
a body of water with a free surface such as an estuary, lake or river. A
one-dimensional, two-dimensional or three-dimensional model formulation may
be required depending on the individual problem to be considered.

Numerical fluid mechanics is a separate discipline, with many features dis-
tinct from experimental fluid mechani~s and theoretical fluid mechanics. The
numerical modeler, however, does have many problems in common with the
physical modeler. The numerical modeler  as does the physical modeler! must
interface with individuals involved in the collection of' prototype data to
provide information for "verification" of the numerical model. Any model
must be verified by demonstrating that the model can produce results which
agree with measured values for some set of boundary conditions before much
credibility can be associated with the model results. There are a wide
range of numerical models; however, certain features and concepts are common
to most models. An understanding of some fundamental concepts will yield
benefits in a wide range of model applications.

Some of the material presented in these notes has been adapted from
material found in publications by Roache , Abbott and Basco . The reader
interested in more detailed information about numerical modelling or compu-
tational f1uid mechanics should consult these references.

Introduction to Basic Finite Difference Conce ts

Consider the flow in a stream or river. It is desired to collect surface
velocity data at six �! equi-spaced locations across the stream  in the x
direction!. The velocities which were measured at time to are shown plotted
as vectors in Figure l. Assume that it, is desired to evaguate the rate of
change of velocity  i.e., the velocity gradient! in the x direction ai
point 3 for this set of data. In mathematical terms, it is desired to evalu-
ate  dV/dXQ, where the subscript 3 indicates the location at which the
derivative is to be evaluated.



Figure 1. Vel oci ty Distr ibution Across a Stream

One method to evaluate  dV/dX!z involves graphically constructing a
smooth curve through the measured data points and then constructing a tangent
to this curve at point 3. This is illustrated in Figure 2. This method in-
volves graphical or numerical curve fitting techniques in addition to the
original measured velocity data.

Figure 2. Graphical Evaluation of the Velocity Gradient

A second general method for evaluation  dV/dX!> uses only the measured
velocity data. In this case the derivative can be represented in terms of
various combinations of the velocity at point 3 and/or neighboring velocity
values. Three possible derivative formulations are intuitively apparent.
These are the forward difference, the backward difference and the central
difference representation. These derivative formulations are indicated in
Figures 3, 4, and 5. The forward difference evaluation uses the velocity
values at point 3 and point 4  the point spatially forward of point 3! to
evaluate the derivative. The backward difference uses the velocity values
at point 3 and point 2  the point spatially behind point 3! to evaluate the



derivative. The central difference uses the velocity values at points 2
and 4  the points on each side of point, 3! to evaluate the derivative. If
the change in velocity in the x direction is gradual, as in this example,
the various formulations for the derivative will yield very similar numer-
ical values. On the other hand, if. the velocity changes rapidly in the x
direction, the various derivative formulations can yield significantly
different results as illustrated in Figure 6. The physical problem may in
some cases dictate which derivative formulation should be used. For example,
to evaluate  dV/dx! at the boundary of the stream  point A 1 it would
appear necessary to use a forward difference. for many cases, however, the
actual derivative formulation used in the model is based upon less apparentfactors. dV

dx! = L .x j
3

Figure 3. Forward Difference Representation of a Derivative

dV 3dX!,= ~"'

Figure 4. Backward Difference Representation of a Derivative



Figure 5. Central Difference Representation of a Derivative

V x!

~ Ax~I hx ~

Figure 6. Different Representations of Derivative at a Point

The finite difference formulation is deceptively simple. The several
formulations which have been presented were intuitive. This approach to
formulating the derivatives, however, provides no indication of their
associated errors of approximation. Other more formal methods are available
for obtaining approximations to derivatives and their associated errors of
approximation. The best approach is to use a Taylor series expansion about
the point of interest. The Taylor series expansion assumes that the quantity
to be represented is continuous in the region of interest as shown in
Figure 7. Furthermore, if the valve of the function and the derivatives of
the function are known at some point, the value of the function at a neighbor-
ing point is given by:



,dV d2V aX2 d'V aX33+1 j {dX!. ~dX , > {~dX !. 3,
J J J

The subscripts refer to space location and H.O.T. means all the remaining
higher order terms {i.e., terms of sma11er magnitude!.

Y{x!

{a+1 ! ax{J-1!~x

Figure 7. Taylor Series Expansion for a Continuous Variable

Solving for the first derivative:

 dx! =   xx !  ~dx ! Z--  ~dx !
dV '+1 ' d2V AX d~V  xx~

 dv! = [~J+1 "]
dX . aX

J
{2!

then the remaining terms are the "truncation errors" and this remainder
approaches zero proportionally as ax, approaches zero. Thus the error of
the approximation is of order  xx, simply written 0{dx!. Equation �! is
the lowest accuracy or first" order, forward difference approximation to
a first derivative. Equation �! was previously indicated as a forward,
finite-difference "formula", but use of the formal Taylor series gives
additional information on accuracy.

Similarly, the backward difference approximation of  dV/dX!j from
j to j-1 over a negative distance  - M ! will give

  � ! = ! � 'L � +  x! �., -  x!, + H.O.T..dV ' -1 d V zX d3V zX
dX. ~X dX . 2! dX 3!

J J

{3!

lf the Taylor series expansion is truncated to include only the first term



dV J+1 ' J J 1 d V aX dzV AX d V hX

3

d"V hX~ d"V hX~ dsY b,X4
~dX !. 4!  ~dX . 3!  ~dX . 5I

J

Dividing thru by 2 and cancelling like terms gives

dV J+1 J-1 d3y QX2 d5Y <X
dX . 2aX dX 3! dX . 5!

J
�!

so that the truncation error is now of 0 ax ! meaning the remainder will go
to zero faster as ax approaches zero. Thus the centered finite difference
is of higher order accuracy or second order accurate in this case.

are:

 dv! - [~3+1 ']
dx AX

1. Forward-di ffer ence
OC<x]

3

V -V.
 dV!  ~3+1
dx . 2/LX

J

are more accurate as indicated by the

2. 8ackward-difference
OI ax]  e!

3. centered-difference
OI axz]

In general, centered differences
Taylor Series expansion.

For most applications the numerical accuracy of first-order approxima-
tions is sufficient. Occasionally, the need arises to consider use of
higher-order approximation formulas for improved accuracy. These formulas
can be derived by writing add~t~onal, higher-order derivatives appearing in
the truncation error as a finite-difference.

For example, in �! the first truncation error term contains  d V/dx ! ~
which couwd be approximated as a first order, forward difference about

'J

"point j" as follows. Repeating �! here as

dY d V hX d Y BXYJ+] = V. +  dX! aX +  ~dX ! ~, +  ~dX ! 3> + H.O.T.
j 3 i

with the truncation error again of 0 ax!.
a centered or central difference approximation
Taylor series from j to j+1 and from j to j-l.
Equations �! and �! to yield

To obtain
for  dV/dX!j, again apply the
This is equivalent to adding



and now expanding between j and j+2 gives

V!+2 = V- + 2 dX! ~X 4{~dX ~-+ 8 ~dX ! 3, + H.O.T.dV d2V zX~ dsV hX~

j

Multiply �! by 2 and subtract �! from  8! to obtain

 ~dX ! = L .X j  ~dX ! "'"'
d~V Vj+2-2VJ+1-Y. d3V

3

 9!

Note that this second derivative is only of O{hx! accuracy. Putting {9!
into �! gives

-Y . +4V. -3V.
    

dX j 2AX

Thus the first derivative  forward difference! is made of higher order
accuracy {0 ax !! by using more than two grid points in the fin1te difference
algorithm.

In a similar manner the higher truncation error terms can be approxi-
mated by finite-differences and combined with the original expression to
obtain formulas involving even mo."e grid po1nts. This work has been per-
formed by many numerical analysts and can be found documented in the
literature.

Flodel Partial Oifferential E uations

�2!

where C is a real constant.

This equation comes from the kinematic description of a flood moving
{flood routing! down a river as derived from the conservation of mass. In

Nost physical processes are described by partial differential equations
derived from physical laws. The partial differential equations are typically
of a form not amenable to analytical solut1ons. Humer1cal methods such as
the finite difference method are used to obtain approximate solutions to the
governing partial d1fferential equations. The simplest such partial differ-
ential equation in fluid mechan1cs is the scalar wave equation. The dependent
variable of interest is water depth  h! which varies in time  t! and in one
spat1al direction {x!. The partial differential equation that arises can be
written:

� +C � =0ah ah
at ax



symbols, this statement that inflow minus outflow equals storage becomes:
+a b ah
aX s at

where:

g = volumetric flowrate,

b = the storage width, and

h = the water depth.

Using the functional relationship between h and g  stage-discharge! equation
�3! can be transformed into an equation where h is the on1y ~de endent
variable; i.e.,

� + C h! � = 0ah ah
ax ax

In this equation C h! is essentially a celerity for propagation of differ-
ential disturbances in the surface elevation. Furthermore, taking C h!=C
as locally constant essentially "linearizes" the equation to simplify the
discussion.

� +C � =0ah ah
at ax

�5!C = real, constant

Equation �5! can be called the pure advection equation for it describes
how the dependent variable, h is advected  moved! in one space dimension and
time by a constant velocity; i.e., the celerity, C. As such, it is a model
equation for many physical processes in science and engineering including:
density variations of a gas propagating in a tube; a stream of automobile
traffic in heavy traffic flow; flow of a glacier; the conservation of a group
of waves of local wave number  k! moving with the group celerity; the ad-
vection of a substance  pollutants! in air or water; and many others. The
"hydraulic", water depth meaning for h will be retained in these discussions.
This equation was the basis for many early attempts at flood routing calcu-
lation for rivers but has been replaced in recent years by the complete,
~dnamic equations of motion plus continuity.

Physically, if successive "pictures" are taken of the river-level pro-
file and the water surface is plotted at various times, a three-dimensional
"model" results as shown in Figure 8. The variation of h with x and t appears
as a "solution surface" which by definition means that the continuum, partial
differential equation  along with appropriate boundary conditions! is satisfied
at all "points" on this solution surface. A continuous solution surface in
time and space is obtained as a solution of the partial differential equation.
Generally speaking, all the infinite number of points on the solution surface
are not, of interest but only a small discrete number of the most interesting
ones. Consequently, it is a logical extension to strive for "solutions" at
only a discrete number of points in the solution field. The approximation of
derivatives by discrete numbers of local points to form finite-differences
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~ jDxFigure 9a. Small Patch of
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with Grid Figure gb. Grid on x-t Plane

Explicit and Imp]ici t Representation of a
Differential E uation

Consider the linearized wave equation

� +C � =0ah ah
at ax �~!

Using finite difference techniques, the various derivatives in the
differential equations are approximated numerically in terms of distinct
values of the variables at the cells. The differential equations are
thus replaced by a numerical algorithm which can be solved numerically for
values of the surface elevation for each cell in the system. As observed
in the earlier representation of {dV/dX!, the derivative representations
are not unique. The finite difference representation of the governing
differential equations can therefore be represented in several forms.
Choosing the most appropriate representation for a particular differential
equation involves the "art" of numerical modeling as opposed to the science
of numerical modeling. Some of the difficulties in numerical modeling
arise because some very logical finite difference representations do not
work and some apparently minor changes in the finite difference equations
can produce significantly different results.
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Fi gure 10b. Sol uti on Sur face
Along t-axis for
Any Time x

Figure 10a. Solution Surface Along
x-axis for Any Time t

Figure 11. One-Dimensional Finite Difference Grid

There is only one spatial variable  x! involved along with the variation in
time  t!. To completely define the problem an appropriate set of boundary
conditions must be defined. A schematic representation is shown in Figure 11
for a one-dimensional system of finite difference ce11s.
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Assume that the values ot h are known at time level n for all of the
finite difference grid and it is desired by finite difference techniques
to calculate the values for h at some later time {level n+1!. How is the
finite difference equation formulated? To illustrate the method, consider
the a ro riaie finite difference ex ressions for cell j of the rid drawn

F 11

h n hn+1 hn
  �,~!

j

{forward difference in time!

hn+l hn-1

3 {centered difference in time!

Note that if a centered time difference is used, the velocity values
at time level n-1 are introduced. Thus, the value of h at point j for
n-'l is used rather than the values at n to cal.culate the values of h at
n+1 if the centered time difference is used.

 forward spatial difference using
at n!

n nh n h.-h.
ax . ~X

 backward spatial difference using
values at n!

{centered spatial difference using
va1ues at n!

There are several possibilities for formulation of the various deriva-
tives. In denoting values of the individual cell variables, superscripts
and subscripts are used. The superscript indicates the position in time
while the subscripts denote the spatial location. Thus h". indicates the
value of h for cell j at time level n. Some possible fortIIulations of the
deri va ti ves are as fo 1 1 ows:





Schematically, this operation is shown in Figure 12. Using known initial
data at some starting time level, n and the boundary data for all future
times, the scheme uses information from one time level to compute values
of the dependent variable at the next time level. To get started values
of h must be defined for all x at t=0  i.e., h x,0! =  h x!! and also
boundary values  conditions! of h for all t at x=0{i.e., h o,t! = h t!!.
Rearranging and putting al.l values at the lower time level, n on the
right-hand-side  RHS! of �6! gives

hn+1 hn Cat hn C at hn
j j zX g aX J 1 �7!

h. = �-C! h. +C h. �8!

where

C = C � = the Courant number
ht

r hx

The Courant number is the ratio of the actual physical celerity to the
celerity  ax/at! at which the numerical model propogates a disturbence.

Consider a different representation of the linearized wave equation
using values of the velocity at the new time n+1 in the spatial derivatives.
The differential equation can also be represented by:

hn+1 hn hn+1 hn+1
'+ c [~~'] = s

at aX

The approx~mate equality �8! is an example of an explicit finite-difference
scheme since any value hjn+1 can be calculated direct1y  explicitly! from
information at each preceding time level. Note the use of the boundary data
at the left boundary {j-1! to keep the calcuIations moving ahead in time
 Figure 12!. This is called a "marching-type"  boundary-value! problem since
we need to step-along computing all intermediate values for all grid points
at each time level in order to arrive at the solution for a given future
time.



n+3

0 n+2

own data

>+2j-I j

Given, initial Data

What is the major difference in this formu'Jation and the previous formulation?
The inability to solve for h. at the new time immediately in terms of known
quantities. The simplified hquation contains more than one unknown:

�+ C � "!h"" -  C � "!h""
Ax j m j 1 j

This equation is of the general form:

C h'." . C h"."
2 g 1

where Cq and Cz are constants.

An equation of this same genera1 form is obtained for each cell of the
system. How does one solve for the new values of h at the time level n+1?
This is an example of im licit formulation of the problem.

A system of equations is obtained which must be solved simultaneously.
Obviously the solution technique will be more involved in this case. Implicit
formulations, however, have some desirable properties which may compensate for
the more involved formulation and solution technique required. Numerical
models formulated in th'is manner are called implicit models.

A combination of the explicit and implicit formulations is sometimes used
in a numerical model. In this case certain variables are formulated and solved

0

m nil
a

Figure 12. Schematic of F-D Scheme and Operation

nknown,
mputed
formation



explicitly and other variables are formulated and solved implicitly. Numer-
ical models formulated in this way are referred to as expwicit-implicit or
implici t-explici t models.

These two formulations would both require retaining values of h for all
cells at time n and n+1 as the calculations proceed through time. If instead
of the previous formulations a centered time derivative were used, there
would be 3 different times involved in the formulation n-l, n and n+1. In
this case, values of h for all cells at 3 time levels would have to be re-
tained in the computational process. The 3 time-level computational schemes
obviously require more computer storage than the 2 time-level schemes;
however, they have several attractive features primarily associated with being
able to express time derivatives using a central difference formulation. As a
result the 3 time-level finite difference computational schemes are becoming
increasingly important now that larger memory computer systems are becoming
more readily available.

Stabilit and Accurac of Finite Difference Solutions

It is important to note that using the numerical algorithm gives a
solution to the finite-difference equation and not generally to the partial
differential equation from which it is modeled. Therefore,

Difference Equations ~ Approximate Solutions

Differential Equations ~ True Solutions

and how close these solutions are to one another is called numerical accuracy.

There are several ways to formulate most differential equations in terms
of finite difference algorithms. Unfortunately many of the formulations will
not yield satisfactory results. The choosing of the most appropriate formu-
lations technique is one of the major problems facing an individual developing

A
Fluid Mechanics: "The newcomer to computational fluid dynamics is forewarned:
In this field, there is as much artistry as science. -------Seemingly minor
modifications of finite-difference forms, iterative schemes or boundary con-
ditions can result in large improvements. --------One of the fascinating
aspects of computational fluid dynamics is the large number of plausible
schemes which do not work". These solutions schemes can generally be found
in either of three categories:

 i! Inaccurate Solutions;

 ii! Accurate,  close to! True Solutions; and

 iii! Oscillating, Highly Inaccurate  unstable! Solutions.

To illustrate these three categories of solutions, again consider the
linearized wave equation. The explicit forward time, backward space formu-
lation of the equation will be considered, Equation �8!.

As initial conditions for the example problem, consider the initial
 t=O, i.e., n=O! flood-wave profile as having an idealized triangular shape



C =C � orht

r ax ~t=C   � ! =C.hx
C r'

To trave'I the 10 ax distance will then require

nn at! = nn C�! = 10 �!

where nn is the number of time steps. Thus for C�= 0.5, 1.0 and 2.0, the
respective values for at and nn are �.5 and 20!, �.0 and 10! and�.0 and
5!.

h
I.O

0.5

0 X
j=l 2 3 4 5 6 7 8 9 IO II =jj
~xxx

Figure 13. Initial Conditions, Triangular Flood-Wave Profile

Case 1 Cr = 0.5

From �8!:

h. = 0.5 h. + 0.5 h.

hn + hn
hII+1 L~l!

J 2

�0!

along the x-axis  j=l to jj=ll! and centered at grid point j=6 with scaled
height, h=1.0.  See Figure 13!. It is also instructive to employ periodic
boundary conditions so that as the wave moves out the right-side boundary
it reappears at the left-side boundary. The calculations are run for a
sufficient number of' time steps to cause the wave to return to its precise
starting position. Since there are no friction or dispersive terms in �2!,
the true solution is a triangular-shaped wave which propagates from left-to-
right unchanged in shape and returns to the starting position exactly as
initially given. Any deviation from this resu'It must be due to the numerical
scheme and parameters employed. Taking C=l and ax=1,
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and a few representative values can be easily calcu]ated. The complete
results are given in Table I a! and reveal that the approximate, numerica]
so]ution is diffused in that the peak amplitude is lowered and the wave is
spread out {dispersed!. The wave peak remains in its proper position in
time so that, the phase of the wave appears okay. This is an example of
numerical amplitude dispersion and the solution must be regarded as poor
and inaccurate.

Case 2 Cr = 1.0

Equation �8! now gives h. = h. and Table I b! shows the initialn+] n

wave shape propagating and und/sturbedJal the solution surface and returning
exactly as it began to the starting posit~on. This is identical to the
exact solution so that our approximation is the best possible in this case.

Case 3 Cr = 2.0

Putting C� = 2.0 in �8! gives

hn+1 hn 2hn
J J J 1 {2]!

All results at T=10 from Table I have been plotted in Figure ]4 to
demonstrate the basic so]ution categories described above, i.e.,

 i! Inaccurate, Case 1,

{ii! Accurate, True Solutions, Case 2, and

{iii! Oscillating, Unstable Solutions, Case 3.

Hence, accuracy is closely re]ated to stability. Case 1 was stable, yet very
inaccurate. In summary, to have the "best" approximation one must:

use the "best finite-difference scheme";

2. use an optima] C =Cat/ax to give optimal, yet stable conditions;

3. use "efficient" algorithms with regards to programming ease,
ca]culation time  CPU, times! and storage space on the computer.

Taking the true celerity, C equal to 1.0 in the above examples, re-
sulted in C = at/ax = 0.5, 1.0, and 2.0. This parameter is seen to play an
important role in the basic so]ution category f' or the finite difference
equation.

and all computed results are shown in part  c!, Table I. Oscil]ations set-in
and the result at T=10 bears no resemblance to the true solution. Such a
computation is complete]y useless for practical purposes. This oscillating
"solution" will continue to get worse as time increases and the difference
scheme with Cr  i.e., ht/hx! so chosen is unstable.
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TABLE X.  continued!

 b! Case 2 C = 1.0  dt = 1.0, nn = 10, T =  nn!  ht! = 10!

h n+1 h n
� i-1

»»= ~p ~ wiJ
~ '4t IJ

~ 0'

~ 5':u

~ M Gv

~ ' 4' 4I

~ 'J v 4

e J~p

11=>~

 c! Case 3 C = 2.0  ht = 2.0, nn = 5, T =  nn!  ht! = 10!

n+1 h + 2h".h = g j 1
3

QP f

~ jQa

~ 'SCAN

2
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Consistenc and Conver ence of Finite Difference E uations

The Taylor series is a fundamental tool of numerical methods. Mith it
the truncation errors of any discrete, finite-difference analog of the
continuum partial differential equations can be determined. How these analog
equations tend to zero as the grid cells are reduced in size indicates the
consistency of the scheme. Consider the finite difference representation of
the linearized wave equation given by Equation �6!.

h- - h. h. - h".,
'] + c r~j'! = o

AX

h io
0,9

08
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O.t

Figure 14. Comparison of Cases After Mave Return to
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Expand the values of h at time level n+1 and spatial location j-1 using a
Tay'tor series to obtain:

hj 1 h + { � X!  -aX! +  ~X! 2, +  ~X! ' 3, + W.O. T. �2!a~h -~X 2 a'h  -~X

3

and

h. +   � ! At +  ~! � +  ~! � ' + HO T.n+1 n ah a2h " zt~ a3h " at3
j j at . at . 2 ! at . 3!

1 1 1
�3!

Putting �2! and �3! into �6! gives

h. +   � ! . zt +  ~! � +  ~! � + H.O. T.n ah a~h at' a 3h At
j at j at . 2! at . 3!

3

h. - � h. + C � [h". -   � ! hX +  - � ! � -  ~!. + H.O.T.n CAt n ~t n ah" a2h "z,X a'h " AX'
j aX j AX j aX aX . 2! aX ' 3!

j 3

Cancelling similar terms and dividing thru by At gives

  � ! +  ~! �, +  ~! �, + H.Q.T,ah a2h At a3h
at at 2! at 3!

-C   � ! + C  ~! � -C  ~! + W.O.T.
ah n a2h aX a 'h aX2
aX ~ aX ~ 2! aX ~ 3!

3 3 J

� TRUNCATION ERROR-

ah ah a h z,t a h AX a3h zt2 a h zX
at aX at 2! aX 2 at 3! aX 3!
.- � + C � + t~ � - C~ � + ~ � + C ~ � + HQT] = 0 �4!

All terms are for any arbitrary point  j,n! so the subscr ipt and superscript
notation can now be dropped. Rearranging terms yields:
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Thus by using the Taylor series in the finite difference scheme the original
partial differential equation is recovered plus additional terms which are
the truncation errors for the scheme given by Equation �6!. Observe that
as the grid is shrunk and at, ax ~0, then the finite difference scheme re-
duces to the partial differential equation. Also, there are no constraints
or conditions required on how the grid is shrunk so that the finite difference
equation is unconditiona] ]y consistent with the partial differential equation.
The truncation errors are of order 0 at,ax! since these are the lowest order
terms occurring. If only terms of 0 zt, sx ! appeared then the truncation
errors would disappear faster as zt, ax W. This would be a higher order
scheme. Truncation errors are ultimately responsible for differences between
numerica] and continuum solutions and should not be confused with machine
round-off errors. The term consistency deals with relations between equations
in their continuum versus discrete forms.

Convergence is a familiar mathematica] expression related to whether {or
how! solutions of discrete, finite-difference analogs approach the true
solution of the continuum, differentia] equation. Thus convergence deals
with relations between solutions as ht, hx ~0. If the sequence of so]utions
tends to the true solution as Lt, hx ~0, then the so]ution of the difference
scheme is convergent. Using the triang]e-wave example and the now fami]iar
finite difference scheme given by Equation �6!, some approximate so]utions
are computed f' or shrinking at and ax to study the convergence concept. The
ratio Cat ax, i.e., the Courant number is ke t constant during the grid
shrinking process for convenience in comparing these results with those pre-
vious]y shown.

Case 1 Cr = 0.5

Initially consideration was given to at = <, ax = 1. Now consider
Lt = 4, ax = 4; then ht = ]/8, ax = 4, etc. The results plotted in Figure ]5
clearly reveal how solutions are converging toward the true solution as At,
hx W, In this case the accuracy improves as the grid is shrunk.

Case 2 C� = 1.0

This solution was exact and involved no truncation errors.

Case3C =2 ~ 0

Before>consideration was for ht = 2, ax = 1. Now consider at = 1,
Ax = '� etc., gradua]]y shrinking both at and a,x proportionately. The
approximation becomes progressively worse  Figure 16! since stronger
oscillations appear as wt, ax M. The solution becomes more unstable and
accuracy rapidly deteriorates as the grid is shrunk. Convergence, stability
and accuracy are closely linked. Observe that for a stable solution the
accuracy is increased by reducing ht and ax. It is incorrect, however, to
believe that numerical instability problems can be removed or accuracy in-
creased simply by using a finer mesh. As demonstrated by the example, the
relation between flow parameters and grid scales zt, zx is important for
stability and accuracy. In our case the Courant number is the important
parameter. Other equations wi]1 have simi]ar parameters.
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The governing equations for the generalized three-dimensional flow of a
fluid represent a complex system of non-linear partial differential equations.
A typical set of' equations might be represented by:

+ �  pu! + �  pv! + �  pw! = 0a a a

at ax ay az.

au au au au 1 ao k ,azu a2u a2u,� + u � +v � +w � - fv=- � � + � ~+~+~'
at ax ay az p ax p ax ay az

au av av av 1 ao k azv a2v a v>+ u � + v � + w � + fu = - � ~+ �  ~+~+~!at ax ay az q ay p ax ay az ' �5!

aw aw aw aw 1 ao k ,a2w a w azw,� + u � + v � +w � = - � � + �  ~+~+~at ax ay az p az q 'ax ay az '

The formulation and calculation process for a three-dimensional numerical
model is involved. In addition, three-dimensional models require a large
quantity of prototype data for the verification and calibration process.

Fortunately many hydrodynamic events can be satisfactorily represented
by a simplified system of governing equations, rather than the generalized
three-dimensional equations, For example, for flow in a river, only the
river elevation and the volumetric flow rate passing a point at any time may
be of interest. Thus, only one spatial dimension is involved. This type
problem is illustrated in Figure 17. This problem can be formulated so that
only the variables g  flow rate! and h  surface elevation! are dependent
variables in the problem. A system of two equations, one momentum equation
and the continuity equation, are required to be solved to obtain a solution
of g and h. This type problem would obviously have fewer finite difference
cells and would be much simpler to solve than the general three-dimensional
system of equations. This solution will also fail to provide any detailed
variation of the velocity with depth or the velocity variation across the
river. However, if only flow rate and surface elevations are of interest,
then a satisfactory solution can be obtained from this model. This type
mode! 'is relat'ively ~nexpensive to operate and verify,
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Figure ll. One-Dimensional Flow in a River

There is also a category of problems where the essential character of
the flow is two-dimensional. This problem is best illustrated by the un-
stratified tidal circulation problem. For tidal circulation flow in an
estuary or harbor, obviously the flow varies with position in the harbor.
However, as illustrated in Figure 18, in many cases there is relatively
little variation of flow across the depth of the water column and an average
velocity over the depth has some physical significance. This problem can
thus be formulated as a two-dimensional flow expressed in terms of U, V and
h, wher e U and V are average x and y components of velocity obtained by
averaging the velocity over the water depth. This problem will involve two
momentum equations and the continuity equation. The problem is still much
simpler to formulate, operate and verify than the general three-dimensional
flow problem. At the same time, for those problems where the velocity does
not vary greatly over depth very satisfactory results can be obtained.

Figure 18. Typical Velocity Distribution Across the
Water Depth for Unstratified Tidal Circulation



27

The three-dimensional model is the most involved. A three-dimensional
array of cells is required. There are, however,. certain problems where it
is necessary to use a three-dimensional model to satisfactorily define the
f]ow field. For examp]e, circulation in a lake is primarily due to wind
stress. The surface velocity in the lake is thus basically in the same
direction as the wind. The velocity, however, varies greatly with depth
and indeed the bottom velocity in the lake may be essentially opposite in
direction to the wind. This is illustrated in Figure 19. Obvious]y an
average velocity over the depth has little physical relationship to the
actual velocity distribution. Three-dimensional models require large numbers
of finite difference cells, the calculation procedure is involved and the
model is difficu]t to verify.

Figure 19. Typical Velocity Distribut~on in a Lake

The simplest model which wi]1 yield satisfactory results should be used
in any mode]ing effort. Obviously a three-dimensional model could be applied
to a problem which is basically one-dimensional. However, if g  flow rate!
and h  surface deformation! are really a]1 that is important, use of a
three-dimensional model would not be justified.

Finite Difference Grid and Boundary Conditions
for Numerical H drod namic Node]s

Consider applying a two-dimensional finite difference model to the lake
as shown in Figure 20. The first consideration is to determine an appropriate
finite difference grid, one which allows the satisfactory representation of
important physical features of the body of fluid. This process involves sub-
dividing the entire body of water into distinct cells as illustrated in
Figure 21. The appropriate "cell" size is determined based upon a number of
considerations. Among the factors to be considered are:

1. The regu]arity or irregularity of the shoreline.
2. The width and regularity of any channels.
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3. The size and position of physical features such as weirs,
breakwaters, etc., which must be simu1ated ~

4. The desired accuracy of the mode1.
5. The available computer facility.
6. The available funds and time for the modeling effort.

� LAWg�

I,'b! Finite Difference Grid Positioned on
Physical System

Figure 20. Two-Dimensional Finite Difference Grid
Pos i ti oned on a Body of F 1 ui d
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Physical Bouzdary

Figure 21. Two-Dimensional Finite Oifference Representation
of a Body of Fluid

In Figure 21 is illustrated a two-dimensional finite difference grid
representation of a body of fluid. The dotted line indicates the actual
boundary of the body of fluid while the heavy solid line represents the
numerical representation of the body of fluid. With finite difference
techniques one is normally limited to rectangular cells and the shoreline
must be approximated by a sequence of straight line segments. One must
keep in mind that the numerical model solves for the system bounded by the
heavy solid lines not the actual physical system. The model solution can
represent a solution to the actua1 system only to the extent that the finite
difference grid approximates the actual physical system. Obviously, as
illustrated in Figure 22, a smaller size finite difference cell will allow
a better representation of the physical system. Of course, the same is true
of an is'land in the body of fluid. The smaller grid and better r epresenta-
tion is obtained, however, at the expense of having a larger number of cells
with which to work. This increases the computer time required to simulate
the physical phenomenon as well as greatly increasing the amount of initial
input data required for the model.

Every finite difference ce11 in the two-dimensional finite difference
grid of Figure 23 will typically require initial data giving the depth of
water for the ce11, the fr~ctional characteristic of the bottom mater~al,
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whether the ceIl is land or water and possibly other data. As the numerical
simulation proceeds, the two-dimensional velocity components u and v and
surface elevation h are calculated  along with possibly other variables! for
every cell at each time level at which calculations are performed.

Physical Boundary

Figure 22. Finite Difference Representation of a Body
of Fluid  Using a Smaller Cell Size than in
Figure 21!

Regions where the depth varies significantly, such as a dredged channel,
may require a small cell size to represent the channel satisfactorily.
Since each cell has a depth associated with it you have a problem similar to
that at the boundaries. This is illustrated in Figure 23,

Some models have the capability to vary the cell size so that a large
cell size can be used whenever possible but with the capability of making
the cell size small in regions where it is required for proper resolution of
physical detail. This is illustrated in Figures 24 and 25.

The formulation problems for the variable cell size models are more
difficult but it economizes on the amount of computer time and input data
required to simulate a particular problem to a given degree of accuracy.

Of course, the maximum total number of cells which can be used in a
numerical modeling effort may be limited by the size memory in the available
digital computer. Each cell requires several memory locations for input data
and calculated results. The speed of the computer may also impact on the



total number of cells which will be feasible for a study. monetary and
time constraints also limit the size and number of cells which can be used.

Figure 23. Representation of a Channel in a Fluid Body
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Figure 24. Illustration of a variable Cell Size
Finite Difference Grid  Mobile Bay Delta Region!
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3U. =[ 8 A]
3X hx

This is illustrated in Figure 27. This derivative for the cell is much more
apparent than would be the case if the velocity components were defined at
the center of the cell. A similar situation exists for other terms and de-
rivatives which occur in the governing finite difference equation.

Staggered Definition of
Var iables

Central Definition of
Variables

Figure 26. Variable Definition in Finite Difference Cells

Most of the principles discussed in the previous paragraphs for two-
dimensional models also apply to one and three-dimensional models. The
specific details may vary but the same general concepts are valid for a'11
finite difference models regardless of the number of spatial dimensions
involved.

In most numerical models the program variables are defined at staggered
locations in the cells as illustrated in Figure 26 {a! rather than at a
central location as shown in Figure 26  b!. Defining the variables in this
manner facilitates imposing boundary conditions and formulating derivatives.
For example, in Figure 27 there is illustrated a cell adjacent to a land
boundary on one side. With the staggered definition of variables, the
boundary condition u = 0 at the land boundary is readily apparent. Also with
the velocity components as indicated in Figure 27 the derivative au/ax for
the shaded cell can be readily formulated as:



Figure 27. Cell Velocity Boundary Condition

Calibration and Verification of Finite Difference Models

Finite difference models must be calibrated and verified before they
can be used with confidence as a predictive tool. The process of calibra-
tion consists of adjusting model parameters such as bottom friction, depths,
etc. to bring the numerical model into agreement with prototype data. Once
the model has been "tuned" or verified, these model parameters should not
change significantly for similar operating conditions. Verification con-
sists of applying the calibrated model for a second set of prototype data
and demonstrating that the model correctIy predicts the system behavior for
this different set of boundary conditions. The model can then be used to
predict potential changes associated with proposed modifications to the
physical system.

Typical model calibration curves are shown in Figure 28. This type
calibration would be necessary at a number of points in the system to insure
that the numerical model is properly describing the system behavior.

An application of a two dimensional depth averaged finite difference
model is presented in Appendix A. This model application is an investi ga-
tion of the effects on flood stage elevations produced by a railroad, built
on a fill, crossing the flood plains above gobi le Bay,



36

Tidal Klevation Cosparfson at
Point. Clear

Velooity Cosparison ~ t East Pass

Figure 28. Typical h1odel Calibration Curves
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APPENDIX A

NUMERICAL COMPUTATIONS FOR ESTUARINE FLOOD PLAINS

3y Donald C. Raney1, John N. Youngblood2 and Hasan Urgun

INTRODUCTION

Freshwater inflow, an essential component of estuaries, can produce

significant problems during periods of large inflow. The highly variable

nature of many estuarine river systems, the geometry, topography, and

bathmetry of the estuary and the interaction of local winds and

astronomical tides produce a hydraulical ly complex environment. Man's

tendency to cluster around estuaries for food, transportation and other

needs invariably results in construction on the flood plains. The result

has often been per"'odic flooding problems at times of major flood events-

Numerical models offer potential for improved environmental 'mpact

assessment of construction on estuarine flood plains.

Over the past ten to fifteen years, numerical modelling of

hydrodynamic systems has become an established science. A variety of

numerical models are available based on both finite difference and finite

element formulations of the basic governing equations. Hydrodynamic

systems are basically three-dimensional; however, for many situations

conditions are such that the flow can be satisfactorily approximated by a

simplified set o f governing equations. The two dimensional depth averaged

model has been shown by a number of investigators �, 4, 7, 10, 11! to

satisfactorily represent flow in an estuary or bay when the water body is

not stratified.

Professor of Engineering Mechanics, The Uni.versity of Alabama, Tuscaloosa, AL
2. Professor of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL
3. Graduate Research Assistant, The University of Alabama, Tuscaloosa, AI



The present contribution presents a specific application of a two-

dimensional depth average finite difference numerical model for flood

plain investigations. Flooding problems which exists on Bayou Sara, a

bayou on the flood pl ains above Nobile Bay, are considered. A rai 1 road

constructed on a fill crosses the flood plains with trestles at major

streams- Because of the location of Bayou Sara relative to the railroad,

some speculation exists concerning the effect which the railroad has upon

flooding probl ems which are encountered along the bayou. The numerical

model is used to 'nvestigate the influence which the railroad exerts on

flood stages along Bayou Sara. The model is partially calibrated and

verified using available prototype data for known flood events. Boundary

conditions are used which produce a range of possible flood events. The

two year, five year, ten year, twenty-f» ve year, fifty year, one hundred

year and five hundred year probability flood events are of particular

interest. For each flood event the model was applied for existing

conditions and also the condition w» thout the railroad on the flood

plains. Di fferences between flow patterns, flow rates and flood stage

elevations are documented. From these differences an assessment can be

made of the railroad influence on flooding along Bayou Sara.

The numerical model has general applicability to similar flooding

problems on estuarine flood plains. Availability of accurate model input

data and flood stage water elevations for model calibration and

verif'cation is generally the limiting factor on the accuracy of results-

THE NUNERICAL NODEL

A complete mathematical description of the hydrodynamic flow in a

harbor, bay or estuary would require that the velocity and density be
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completely specified for every' point in the system at all times:

u = u  x,y,z,t!

p = p  x y z t!

where

x = longitudinal coordinate measured along the estuary axis

y = transverse coordinate

z = vertical coordinate

= time

Because of the diff'culties in formulating, executing and verifying a

three-dimensional model, researchers have dev-'sed a variety of numerical

models of various degrees of simplification.

A two-dimensional depth averaged model  BAY! 's used in this

investigation. The vertical components of velocity and acceleration are

neglected and the general three-d'mens'onal governing hydrodynamic

equations are integrated over the water depth. A pseudo-three-dimensional

effect is present since the equations are forced to satisfy the boundary

conditions at the bottom and surface of the water column. A depth-

averaged two-dimensional flow field is obtained but three-dimensional

geometry can be considered. The most important approximat ons used in the

model are those of constant density and relatively small variations of

velocity over the depth, conditions which should be reasonably valid in

the Mobile Bay delta. Where these conditions are approx'mately valid,

this type of numer'cal model can provide accurate representations of tidal

elevations and velocities.

The rectangular coordinate system is located in the plane of the

undisturbed water surface as shown in Figure 1. The equations of mot'on



and the equation of continuity are written as follows:

Bu Bu Bu Bq� +u � +v � +g � � fv= R +L
3t Bx 3y Bx x x

� +u � +v � +g � +fu=R +LBv 3v Bv Bq

3t 3x 3y 3y y y

and

� + � L  h + q! u] + � L  h + q! v] = 03$ 3 3

Bt Bx By

where

u depth-averaged velocity comoponent in the x-direction

= time

x,y rectangular coordinate variables

v depth-averaged velocity component in the y-direction

g = acceleration due to gravity

q water level displacement with respect to datum elevation

f Coriolis parameter

= the effect of bottom roughness in x and y directions

the effect of the wind stress acting on the water surface 'n

the x and y d' rections

K,Rx' y

L,Lx' y

h water depth

�!

y C  h+ q!

where C is the Chezy coefficient. The wind stress terms are of the form:

The continuity equation has been obtained by integrating across the

water depth and applying kinematic and dynamic boundary conditions at the

surface and bottom of the reservoir. The bottom friction terms are

represented by:
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T
x

x  h+ q!

I

 h+ n! �!

C
x~a+ba

where a, b and c are arbitrary constants. By applying a smoothly varying

grid transformation wh' ch is cont' nuous and which has continuous first

derivatives, many sta'bility problems commonly associated with variable

grid schemes are el 'minated provided that all derivatives are centered 'n

space �7!. The transformed equations in space can be written as

Bu 1 3u 1 Bu R -Bq� + � u � + � v +
Bt 41 Bal 32 302 Pl Bul

 9!fv~R +L
X X

� + � u � + � vBv 1 Bv 1 3v Bq
+ +fu=R +L

~l Bul u2 3 2 >2 3 2 �0!

Bri 1 3~ + � � L h+ @!uj + � � L h+ rl!v] = 01 3

3t Pl Bal Ba2

To solve the governing equations, a finite difference approximation

where T and T are the wind stress components acting on the waterx y

surface.

A major advantage of BAY is the capability of applying a smoothly

varying grid to the given study region. This allows efficient simulat.'on of

complex geometries by locally increasing grid resolution in critical areas.

For each coordinate direction, a piecewise reversible transformation 's

independently used to map prototype or real space  x,y space! into a

computation space  ul, u2 space!. The transformation takes the form
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of the equations and an alternating d'rection technique are employed. The

solution scheme is sim' lar to that proposed by Leendertse �!. A space-

staggered scheme is used in which velocities, water-level displacement,

bottom displacement, and water depth are described at different locations

within a grid cell as shown in Figure 2. Central differences are used for

evaluating all derivatives in the govern'ng equat'ons. The application of

these difference approximations gives rise to corresponding difference

equations centered about different points within a grid cell. These

expressions require the evaluation of certain quantities at locations

different from those defined in the grid system. Such quant' ties are

replaced by values computed from one- and two-dimensional averaging of

neighboring values.

Three types of boundaries are involved in the calculations: solid

boundaries at fixed coastlines, artificial tidal input boundaries arising

from the need to truncate the region of computation and river inflows into

the bay.

The boundary condition for the solid boundary can be written as

V~0 �2!

MOBILE BAY DELTA SYSTEM

denotes the normal component of velocity. Artificial tidal

boundaries were used in the model to describe the tidal action that occurs

at the bay computational boundaries. The water surface elevation-time

history for the desired tidal cycle is spec'fied at each such boundary and

applied during the operation of the model. River inflow boundaries are

required to simulate the river hydrograph for these significant streams

discharging into the study region.



Mobile Bay is the terminus of the fourth largest river system, in

terms of discharge, in the contiguous United States  8! and the sixth

largest on the North American Continent �!. The river system discharging

into Mobile Bay is a complex one as is illustrated in Figure 3. In

simplified form, the river system can be considered to start at the

confluence of the Alabama and Tombigbee Rivers where the Mobile R' ver s

formed The Mobile River then divides into the Tensaw and lower Nobile

Rivers. Both of these rivers branch many times producing a complex

network of major channels, creeks, and bayous. The river system flows

over a flood plain which extends for over 30 miles south terminating at

the northern end of Mobile Bay.

The average discharge of the river system �929-1978! into the bay is

approximately 64,100 cfs �815m3/sec! �0!. The monthly average

discharges have a high flow in February, March and April and a low flow

per'od between June and November.

Significant flooding is considered to occur when flows exceed

approximately 247,000 cfs �994m3/sec! �3!. A table of probabi lity

floods is shown in Table 1. At the delta-bay interface the lower Mobile

River and three distributaries, the Tensaw-Spani sh River, the Apalachee

River and the Blakeley River d'scharge into Mobile Bay. At the upper end

of the study area, I-65 cuts across several water bodies, the Mobile

River, Little Lizard Creek, Niff lin Lake, the Middle River, and the Tensaw

River. Between the boundaries for the study area 1'es a great deal of

flood plains with an elevation only a few feet above mean sea level.

During flood conditions great deal of water is stored on these flood

plains. There have been several general studies �2, 14, 15! of the maxsh



flood plain areas and the effects of river flooding in Nobile Bay. Little

attention, however, has been focused on flooding problems in the delta

region.

The railroad general ly follows a northeast to southwest path across

the delta which basically has a north-south alignment. As indicated in

Figure 3, Bayou Sara is located 'n the west-central region of the delta.

The geometry of the system suggests that the railroad might have an effect

on flood stage elevations along Bayou Sara.

THE FINITE DIFFERENCE GRID

The fini,te difference grid, Figure 4, used to model of Nobile Bay

delta system was developed using a 1:24000 scale nauti.cal chart {16!. A

variable grid was developed with the primary objective of good resolution

of the main river channels and the area around Bayou Sara. A reasonable

representation of other geometric and bathymetric features of the area was

established. The dimension of the resulting gr'd was 78 by r8 cells or

2964 cells. After mapping the grid, it was used as an overlay on the

nautical chart to assi.gn boundaries, depth and Nanning friction

coefficients for each finite difference cell. A set of aerial photographs

�1! of the delta region taken during February 1982 was also useful in

developing the finite difference grid and other input data for the

numerical model. Information on construction details of the railroad

across the flood plains was also used in establishing the finite

difference grid. The manner in which the grid represents the major

channels in the study area is illustrated in Figure 5.

The smallest cel ls were used in representing the area around Bayou

Sara since this was the region of primary interest. Small cells were also
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used for the major river channels. Larger cells were used on the flood

plain areas where the bathymetry was reasonably constant and/or boundary

geometry was relatively simple. The smallest cell size was 500 feet and

the maximum depth was approximately 45 feet.

Elevation boundary conditions were specified at the Mobile Say

boundary and upstream at the I-65 boundary. The Mobile Bay elevation is

primarily dominated by the tide while the elevation boundary condition

specified at I-65 is representative of the flood stage. An elevation

boundary condition was applied at I-65 rather than a flow boundary

condition because of greater accuracy in 'mposing the boundary condition

-'n the numerical model.

Depths were assigned to each water cell as delineated by the land

boundary. The depth of each cell was determined as a weighted average of

the charted depths within that cell. Secause of a lack of bathymetr'c and

topographic data for the flood plains, most of these areas were considered

to have the same elevation. In areas where the finite difference cell is

larger than the actual physical dimension, cell depths were reduced in the

model to make the flow cross-sectional areas approximately equal.

Manning's n friction values for bottom roughness were assigned on a

relative basis according to the bottom type specified by the nautical

chart ~

The datum of the nautical chart was the National Geodetic Vertical

Datum of 1929  N.G.V.D.!. All elevations used in the study were

established relative to this datum. Most of the flood plains are only

slightly above the N.G.V.D. reference in elevation and are flooded during

the flood events to be simulated.



NODEL CALIBRATION AND VERIFICATION

A numerical model must be calibrated and verified before a great deal

of confidence is placed in the model results. Calibration consists of

demonstrating that the numerical model can be adjusted to produce results

which are consistent with a measured prototype data set. Verification

consists of applying the calibrated model and reproducing a second set of

prototype data to a reasonable degree of accuracy.

For this study one relatively complete set of prototype data  9! was

available representing high water elevations around the delta region for

the flood event of March 1979. This data set was used to cal'brate the

model. A partial data set  9! of high water elevations was available for

the Spring 1979 flood event. These data were used to provide a limited

verificat'on of the numerical model.

The measured high water elevations at I-65 provided a basis for

establishing the northern elevation boundary conditions for model

calibration. The tidal elevations measured in Mobile Bay provided the

boundary condition for the southern boundary of the model. The model was

started with a constant water elevation throughout the delta region

including the flood plains. The boundary conditions were then allowed to

gradually change until the desired flood condition was reached in about 18

hours. The boundary conditions were then held constant for approximately

6 hours so that a quasi-steady state condition was reached in the model.

For a more detailed study actual river hydrographs should be used as the

river boundary condition. Flood stage elevations at 13 locations in the

delta region and the system flow rate were the primary variables used in

establishing model calibration and verification. The special gage point



locations are shown in Figure 6.

The calibration and verification process vas cont'nued until

agreement was reached between the numerical model and the prototype data

sets. A vector plot of the flow pattern for the calibration run is shown

in Figure 6. Observe that most of the flow follows the channel with only

small velocities on the flood plain areas. Additional results from the

calibratian, and verification process are shown in the next section of the

paper along with other model results. An average height of 1.9 feet above

H.G.V.D. for the flood plains appeared to produce the most satisfactory

results. Manning n values between 0.021 and 0.07 were used.

MODEL APPLICATIONS AND RESULTS

The numerical madel was applied for a range of upstream elevation

boundary conditions. The lower boundary condition, dominated by the bay

tide, was maintained as that used for model calibration. Different

upstream boundary elevations vere selected to produce flood events with a

range of flow rates between approximately 200,000 cfs �660 m~/sec! and

800,000 cfs �2,700 m~/sec!. This range of flow rates contains the 2

year, 5 year, 25 year, 50 year, 100 year and 500 year probability flood

events. In each case, the starting condition for the model was an initial

constant water elevation and zero velocity in the delta region. The

boundary conditions were then allowed to change to praduce the desired

quasi-steady state flood event in approximately 24 hours. For each set of

boundary conditions there were two model appl'cations. The first model

application was for existing conditions; i.e., vith the railroad crossing

the flood plains. The railroad fill was then replaced by flood plains



with friction and depth characteristics similar to surrounding areas.

Figure 7 ' llustrates the calculated flood stage elevations at one of

the special gage po'nts in the delta system as a function of flow rate.

Results for existing conditions and for the without railroad case are

presented in the figure along with prototype data used for calibration and

verification. The numerical model was found to be in general agreement

with prototype data for the entire delta region. The railroad does not

appear to produce large changes in flood elevations at any of the points

in the delta region where prototype data were available. The largest

effects at any of the special gage points are in the Bayou Sara area, but

even here effects are small compared with the overall flood stage

elevation.

Sample vector plots of overall flow patterns in the delta region are

presented in Figures 8 and 9. Figure 8 is for existing conditions while

Figure 9 represents the flow pattern if the railroad did not cross the

flood plains. These plots clearly indicate that most of the flow passes

along the exist ng channels regardless of whether the railroad exists or

does not exist on the flood plains. There is a great deal of water stored

on the flood plains, but there is not a large quantity of flow along

 north to south! or across  east to vest! the flood plains. The large

friction and small depth conditions on the flood plains are not conducive

to large flows.

Representative contour plots of flood stage elevation in the delta

region are presented in Figures 10 and 11. Figure 10 is for the existing

condition and Figure 11 is for the case without the railroad on the flood

plains. These contour plots indicate that the railroad does produce

significant differences in flood stage elevations within the interior of



the delta region; there is almost 2 ft �61 m! differences in elevation

across the railroad fill in some locations. Figure 12 represents a

contour plot for the difference in flood stage elevation which can be

attributed to the railroad crossing the flood plains. Some large

differences are observed in the interior of the delta but only relatively

small differences extend to the boundary areas.

CONCLUSIONS

The numerical model was calibrated and verified to an extent

consistent with the objectives of this investigation. The flows in the

delta region are found to be primarily within the existing channels with

only a relatively small percentage of the flows along or across the flood

plains. Significant differences in flood stage elevations are produced by

the railroad within some interior regions of the delta; i.e., across the

railroad fill. However, these regions where significant effects are

observed are confined to restricted regions with' n the interior of the

delta. The effects are relatively small around the boundar'es of the delta.

Based upon the numerical model results, the increase in flood stage

elevation along Bayou Sara is small compared with the overall flood stage

elevation- Below a system flow rate of 200,000 cfs �,660 m3/sec! there

is a negligible effect caused by the railroad. On a statistical basis, a

200,000 cfs �,660 m3/sec! flow rate corresponds to a flood event which

should occur once each year. The railroad effect at Bayou Sara increases

up to approximately six to eight inches �5.2 to 20.3 cm! for a flow rate

of 7o0,000 cfs �9,800 m3/sec!. A 700,000 cfs �9,800 m3/sec! flow rate

corresponds to a flood event which has a 500 year statistical rate of



occurrence. The effects of the railroad on flood stage elevations along

Bayou Sara is therefore small compared with overall flood stage

elevations.
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STATISTICAL RATE OF OCCURRENCE  YRS! EXPECTED FLOW RATE  CFS!

284,000   8,040 3/s c!

371,000 �0,500 m3/sec!

425,000 �2,000 m3/sec!

491,000 �3,900 m3/sec!

540,000 �5,300 m3/sec!

588,000 �6,700 m3/sec!

700,000 �9,800 m3/sec!

25

100

500

TABLE I

FLOV RATE - EXPECTED PROBABILITY DATA FOR NOBILE RIVER AT BARRY STEAN PLANT

 BUCKS, ALABANA!
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Figvre 3. Mobile Bay and River Delta System
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Figure 6. Vector Plot of Velocity Pattern in Delta Region for
Calibration Condition
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D- SPECIAL GAGE POINT

Figure 10. Flood Stage Contours  in feet! in the ."fobile Bay Delta
Region for a Flow Rate of 504,327 cfs.
� ft 0.305m, 1 cfs = 0.028 m /sec!
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