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Introduction

Numerical modeling is a rapidly developing discipline which can be
attributed in part to the general availability of fast, large memory digital
computers. A fast, large memory computer is generally necessary to obtain
the desired resolution from the model results in a reasonable amount of
computer time. Prior to the 1970's access to large, fast computers was
restricted to the larger government or university research laboratories;
however, this type computer is now generally available at most universities.
As a consequence, development and use of state-of-the-art numerical models
are now common within the academic community.

A numerical model basically consists of a numerical algorithm which has
been developed from the differential equations governing the physical phenom-
ena. Several methods exist for developing the numerical algorithm, falling
generally into two types of formulation; finite difference and finite element.

Finite element techniques are used extensively in solid mechanics but to a

much smaller extent in fluid mechanics. For a variety of reasons finite
difference techniques have gained greater acceptance in hydrodynamic modeling
and will be used exclusively in this treatment of numerical modeling of hydro-
dynamic systems. Hydrodynamic systems is a general term intended to denote

a body of water with a free surface such as an estuary, lake or river. A
one-dimensional, two-dimensional or three-dimensional model formulation may
be required depending on the individual problem to be considerad.

Numerical fluid mechanics is a separate discipline, with many features dis-
tinct from experimental fluid mechanics and theoretical fluid mechanics. The
numerical modeler, however, does have many problems in common with the
physical modeler. The numerical modeler {as does the physical modeler) must
interface with individuals involved in the collection of prototype data to
provide information for "verification" of the numerical model. Any model
must be verified by demonstrating that the model can produce results which
agree with measured values for some set of boundary conditions before much
credibility can be associated with the model results. There are a wide
range of numerical models; however, certain features and concepts are common
to most models. An understanding of some fundamental concepts will yield
benefits in a wide range of model applications.

Some of the material presented in these notes has been adapted from
material found in publications by Roachel, Abbott2 and Basco3. The reader
interested in more detailed information about numerical modelling or compu-
tational fluid mechanics should consult these references.

Introduction to Basic Finite Difference Concepts

Consider the flow in a stream or river. It is desired to collect surface
velocity data at six (6) equi-spaced locations across the stream {in the x
direction). The velocities which were measured at time t, are shown plotted
as vectors in Figure 1. Assume that it is desired to evajuate the rate of
change of velocity (i.e., the velocity gradient) in the x direction at
point 3 for this set of data. In mathematical terms, it is desired to evalu-
ate (dV/dXg), where the subscript 3 indicates the location at which the
derivative is to be evaluated.
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Figure 1. Velocity Distribution Across a Stream

One method to evaluate (dV/dX}, involves graphically constructing a
smooth curve through the measured data points and then constructing a tangent
to this curve at point 3. This is illustrated in Figure 2. This method in-
volves graphical or numerical curve fitting techniques in addition to the
original measured velocity data.

X

(dV/dX}s = SLOPE OF LINE

Figure 2. Graphical Evaluation of the Velocity Gradient

A second general method for evaluation (dV/dX); uses only the measured
velocity data. In this case the derivative can be represented in terms of
various combinations of the velocity at point 3 and/or neighboring velocity
values. Three possible derivative formulations are intuitively apparent.
These are the forward difference, the backward difference and the central
difference representation. These derivative formulations are indicated in
Figures 3, 4, and 5. The forward difference evaluation uses the velocity
values at point 3 and point 4 (the point spatially forward of point 3) to
evaluate the derivative. The backward difference uses the velocity values
at point 3 and point 2 {the point spatially behind point 3) to evaluate the



derivative. The central difference uses the velocity values at points 2
and 4 (the points on each side of point 3) to evaluate the derivative. If
the change in velocity in the x direction is gradual, as in this example,
the various formulations for the derivative will yield very similar numer-
ical values. On the other hand, if the velocity changes rapidly in the x
direction, the various derivative formulations can yield significantly
different results as illustrated in Figure 6. The physical problem may in
some cases dictate which derivative formulation should be used. For exampie,
to evaluate (dV/dX} at the boundary of the stream {(point A } it would
appear necessary to use a forward difference. For many cases, however, the
actual derivative formulation used in the model is based upon less apparent
factors.

Figure 3. Forward Difference Representation of a Derivative
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Figure 4. Backward Difference Representation of a Derivative



Figure 5. Central Difference Representation of a Derivative
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Figure 6. Different Representations of Derivative at a Point

The finite difference formulation is deceptively simple. The several
formulations which have been presented were intuitive. This approach to
formulating the derivatives, however, provides no indication of their
associated errors of approximation. Other more formal methods are available
for obtaining approximations to derivatives and their associated errors of
approximation. The best approach is to use a Taylor series expansion about
the point of interest. The Taylor series expansion assumes that the quantity
to be represented is continuous in the region of interest as shown in
Figure 7. Furthermore, if the value of the function and the derivatives of
the function are known at some po1nt, the value of the function at a neighbor-
ing point is given by:
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The subscripts refer to space location and H.0.7. means all the remaining
higher order terms (i.e., terms of smaller magnitude).

For a continuous function, va]ue.at
(j+1)ax or {j-1)ax can be approximated
from known conditions at Jax.
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Figure 7. Taylor Series Expansion for a Continuous Variable

Solving for the first derivative:

V., .-V,
+ AX d3v Ax2
ah - - g g o

If the Taylor series expansion is truncated to include only the first term

Vi o=V.
@0, = 5y (2)

then the remaining terms are the "truncation errors” and this remainder
approaches zero proportionally as Ax, approaches zero. Thus the error of
the approximation is of order Ax, simply written 0{ax). Equation (2) is
the lowest accuracy or "first" order, forward difference approximation to
a first derivative. Equation (2) was previously indicated as a forward,
finite-difference "formula", but use of the formal Taylor series gives
additional information on accuracy.

Similarly, the backward difference approximation of (dV/dx) from
J to j-1 over a negative distance (- Ax) will give

V.-v.
Z g -1 d2v, ax _ ,d3v AX
‘HJ? ot (dxz)j TR T L TRALEALE (3)



with the truncation error again of 0{ax). To obtain
a centered or central difference approximation for (dV/dX)j, again apply the
Taylor series from j to j+1 and from j to j-1. This is equivalent to adding
Equations (1) and (3) to yield

v V. ViV
dv J+1 J7 -1 d2y, aX AX d3y, ax?
2 (T)j =t TE (dxf)j_ (o ) 2r - 2 (aiT)jT
d4*V, ax3 dhv, ax3 dSyv, axt
(dxﬁ)j ar * (dxﬁ)j 3T Z(Hi?)j gt HO.T
Dividing thru by 2 and cancelling like terms gives
-V 3 2 5
+ - v X X4
()-[JTM“J-(gxa)“ (‘“’) A 4 ho.T. (a)
J

so that the truncation error is now of 0(Ax2) meaning the remainder will go
to zero faster as Ax approaches zero. Thus the centered finite difference
is of higher order accuracy or second order accurate in this case.

Summarizing, the basic ways to approximate first derivatives in space

_are:
1. Fog?igﬁ-difference (%%), _ [VJ25;V.] (5)
J
2. Bagtz:gd-difference (%§J, ) [lexg-l] (6)
J
= I R R 7

In general, centered differences are more accurate as indicated by the
Taylor Series expansion.

For most applications the numerical accuracy of first-order approxima-
tions is sufficient. Occasionally, the need arises to consider use of
higher-order approximation formulas for improved accuracy. These formulas
can be derived by writing additional, higher-order derivatives appearing in
the truncation error as a f1n1te-d1fference

For example, in (1) the first truncation error term contains (dZV/dxz)j
which couid be approximated as a first order, forward difference about '
"point j" as follows. Repeating (1) here as

) AX2 (d3v) ax3

v = V ( ) AX + ( St 37+ H.0.T. (1)

J+1



and now expanding between j and j+2 gives

_ dv d2y AX2 d3y AX3
Vj+2 = Vj + 2(-&-)(-);l AX + 4(a~i2')‘] —2-'-"" S(W)J 37 + H.0.T. (8)

Multiply (1) by 2 and subtract (1) from (8) to obtain

Vi -2V .-V,
2 + d3
(giy)_ = [ J+2 Axg 1 J7 - (dxg) AX + H.0.T. (9)
J

Note that this second derivative is only of 0(Ax) accuracy. Putting {9)
into (2) gives

Vi =V, Vi -2V, (+Vs 2 2 2
J+1 J¥27C 4+ 04 AX + p AXZ | AXE4.d2V
(*-cdig)j = [ 1] - L iz 1% " 3r+7 ](dxz_)j + H.0.T. (10)
or
-~ LAY =3V, _
dy _ J+2 7§+l J :y 2 11
(dx)J = [ ZAX ] + 0 (ﬁx ) ( )

Thus the first derivative (forward difference) is made of higher order
accuracy (0(ax2)) by using more than two grid points in the finite difference
algorithm.

In a similar manner the higher truncation error terms can be approxi-
mated by finite-differences and combined with the original expression to
obtain formulas involving even more grid points. This work has been per-
formed by many numerical analysts and can be found documented in the
literature.

Model Partial Differential Equations

Most physical processes are described by partial differential equations
derived from physical laws. The partial differential equations are typically
of a form not amenable to analytical solutions. Numerical methods such as
the finite difference method are used to obtain approximate solutions to the
governing partial differential equations. The simplest such partial differ-
ential equation in fluid mechanics is the scalar wave equation. The dependent
variable of interest is water depth (h) which varies in time (t) and in one
spatial direction {x). The partial differential equation that arises can be
written:

ah

3h ah _
3t Tlox = O (12)

where £ is a real constant.

This equation comes from the kinematic description of a flood moving
(flood routing) down a river as derived from the conservation of mass. In



symbols, this statement that infiow minus outflow equals storage becomes:

%%'+ by %% =0 ’ (13)
where:
Q = volumetric flowrate,
bS = the storage width, and
h = the water depth.

Using the functional relationship between h and Q (stage-discharge) equation
(13) can be transformed into an equation where h is the only dependent
variable; i.e.,

ah ah _
% T c(h) ax 0

In this equation C(h) is essentially a celerity for propagation of differ-~
ential disturbances in the surface elevation. Furthermore, taking C(h)=C
as locally constant essentially "1inearizes" the equation to simplify the
discussion.

ﬂ _a.b..= = ’15
it c ™ 0 € = real, constant (15)

Equation (15) can be called the pure advection equation for it describes
how the dependent variable, h is advected (moved) in one space dimension and
time by a constant velocity; i.e., the celerity, C. As such, it is a model
equation for many physical processes in science and engineering including:
density variations of a gas propagating in a tube; a streamof automobile
traffic in heavy traffic flow; flow of a glacier; the conservation of a group
of waves of Tocal wave number (k) moving with the group celerity; the ad-
vection of a substance (pollutants) in air or water; and many others. The
"hydraulic”, water depth meaning for h will be retained in these discussions.
This equation was the basis for many early attempts at flood routing calcu-
lation for rivers but has been replaced in recent years by the complete,
dynamic equations of motion plus continuity.

Physically, if successive "pictures” are taken of the river-level pro-
file and the water surface is plotted at various times, a three-dimensional
"model" results as shown in Figure 8. The variation of h with x and t appears
as a "solution surface" which by definition means that the continuum, partial
differential equation (along with appropriate boundary conditions) is satisfied
at all "points" on this solution surface. A continuous solution surface in
time and space is obtained as a solution of the partial differential equation.
Generally speaking, all the infinite number of points on the solution surface
are not of interest but only a small discrete number of the most interesting
ones. Consequently, it is a logical extension to strive for "solutions" at
only a discrete number of points in the solution field. The approximation of
derivatives by discrete numbers of local points to form finite-differences



and the algebraic solution of the resulting equations representing PDE's
for various initial and/or boundary conditions is called the Finite-
Difference Method (FDM). The concept of discretization where a continuous
domain is represented by a discrete number of grid points or adjacent grid
areas js fundamental to all numerical methods.

Figure 8. River Profile at Successive Times-Solution Surface

Finite-Difference Approximations

The concepts of a differential equation with solution known about
infinitesimal regions and for all points can be extended to a finite-sized
region and fixed number of points. A small patch of solution surface shown
in Figure 8 has been expanded in Figure 9a and a finite grid drawn upon the
solution surface. A projection of this grid on the x-t plane is also shown
in Figure 9a and schematized in Figure 9b. The grid points are separated
by distances 4x and At which are taken here as constants. The location of
each grid point {j.n) is then established. The use of indices j, j+1, j-1,
etc. for the x-direction space points and n, n+1, n-1, etc. for the time
interval "points" has become somewhat standard.

Figure 10a shows a section of the solution surface along the x-axis
at some time Tevel, n At so that the slope of this line at any point, A,
is ah/3x. Figure 10b is the analogous t-axis section and shows gradient
ah/at.
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Using finite difference techniques, the various derivatives in the
differential equations are approximated numerically in terms of distinct
values of the variables at the cells. The differential equations are
thus replaced by a numerical algorithm which can be solved numerically for
values of the surface elevation for each cell in the system. As observed
in the earlier representation of {dV/dX), the derivative representations
are not unique. The finite difference representation of the governing
differential equations can therefore be represented in several forms.
Choosing the most appropriate representation for a particular differential
equation involves the "art" of numerical modeling as opposed to the science
of numerical modeling. Some of the difficulties in numerical modeling
arise because some very logical finite difference representations do not
work and some apparently minor changes in the finite difference equations
can produce significantly different results.

Explicit and Implicit Representation of a
Differential Fquation

Consider the Tinearized wave egquation

ah 3h

Brc-o (12)

3 X
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There is only one spatial variable (x) involved along with the variation in
time (t). To completely define the problem an appropriate set of boundary
conditions must be defined. A schematic representation is shown in Figure 11
for a one-dimensional system of finite difference cells.

# Solution
Surface

/‘Q\

/‘n/\\ X X

Figure 10a. Solution Surface Along Figure 10b. Solution Surface
x-axis for Any Time t Along t-axis for
Any Time x
/ y
/ /
/] /
A / B

- - - - /
j J-11 J [Jd+1 P
/] e 4
/ 4

Figure 11. @ne-Dimensional Finite Difference Grid
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Assume that the values of h are known at time level n for all of the
finite difference grid and it is desired by finite difference techniques
to calculate the values for h at some later time (level n+1). How is the
finite difference equation formulated? To illustrate the méthod, consider
the appropriate finite difference expressions for cell j of the grid drawn
in Figure 17. .

There are several possibilities for formulation of the various deriva-
tives. In denoting values of the individual cell variables, superscripts
and subscripts are used. The superscript indicates the position in time
while the subscripts denote the spatial location. Thus h0 indicates the
value of h for cell j at time level n. Some possible forfluTations of the
derivatives are as follows:

n RMHn
(iﬂ) = L7 (forward difference in time)
at j At
T+ D]

hyord_ 3
(at)j ( 2at ] (centered difference in time)

Note that if a centered time difference is used, the velocity values
at time Tevel n-1 are introduced. Thus, the value of h at point j for
n-1 is used rather than the values at n to calculate the values of h at
n+l if the centered time difference is used.

T hg+]~hq )
(=) = [ (forward spatial difference using
X AX
J at n)
n hq~h" : . :
(gﬁ = -1 (backward spatial difference using
ax ax ] values at n)
n
L h.+]-h?_1 (centered spatial difference using
(ggﬂj = [ ) values at n)
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It is also possible to formulate the spatial derivatives in terms of
values of h at the new time n+l,

n A1 _pn+l

(%gj. L N

AX (forward spatial difference using
J values at n+1)
n hn+1 _hn+]
LA [ i-1 (backward spatial difference using
3x ; AX ] values at n+l1)
hq+1_hn+]
@ . (3t _J-14 (centered spatial difference using
ax 2K
values at n+l)

This 1isting of derivatives is not complete but is intended only to
represent some simple methods of formulation. Observe that one of the
major distinctions between the various derivatives is whether hN or hitl
is used in the spatial derjvatives. The choice of whether to use h" or
h*1 in the spatial derivative is not obvious since the derivative is to
be applied over a time interval from n to n+l. Actually an average
spatial derivative for this time range might appear to be most appropriate;
i.e., for the forward difference

ORI [_*_lgj}-ht'*]‘T
X' T2 AX 2 AX

Indeed this type of information is often used.

Consider the forward time, backward difference formulation for the
spatial derivative and using the values at time level n in the spatial
derivatives. This formulation for the differential equation would be:

ml_pn n_pl
H—dj+c [_\Lﬁl:l_] =0 (16)
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Schematically, this operation is shown in Figure 12. Using known initial
data at some starting time level, n and the boundary data for all future
times, the scheme uses information from one time level to compute values
of the dependent variable at the next time level. To get started values
of h must be defined for all x at t=0 (i.e., h{x,0) = {h{x)}) and also
boundary values {conditions) of h for all t at x=0(j.e., h{o,t) = h(t)).
Rearranging and putting all values at the lower time level, n on the
right-hand-side (RHS) of (16) gives

n+l _ .n _ Cat .n At .n
e e Y Y S I {(17)
ar
h'J?” = (1) ) + ¢ n] (18)
where
C. =¢C At the Couranf number
r AX

The Courant number is the ratio of the actual physical celerity to the
celerity (ax/at) at which the numerical model propogates a disturbence.

The approximate equality (18) is an example of an explicit finite-difference
scheme since any value hj"+1 can be calculated directly (explicitly) from
information at each preceding time level. Note the use of the boundary data
at the left boundary (j-1) to keep the calculations moving ahead in time
(Figure 12). This is called a "marching-type" (boundary-value) problem since
we need to step-along computing all intermediate values for all grid points
at each time level in order to arrive at the solution for a given future
time.

Consider a different representation of the linearized wave equation
using values of the velocity at the new time n+1 in the spatial derivatives.
The differential equation can also be represented by:

Mlat o T

i i TN-1. L
=t el }=0

h

AX
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Figure 12. Schematic of F-D Scheme and Operation

What is the major difference in this formulation and the previous formulation?
The inability to solve for h, at the new time immediately in terms of known
quantities. The simplified équation contains more than one unknown:

Aty n+] sty n+l _ on

This equation is of the general form:

n+l ntl _.n
Cihi " + CohJTy = b (19)

where C; and C, are constants.

An equation of this same general form js obtained for each cell of the
system. How does one solve for the new values of h at the time level n+l1?
This is an example of implicit formulation of the problem.

A system of equations is obtained which must be solved simultaneously.
Obviously the solution technique will be more involved in this case. Implicit
formulations, however, have some desirable properties which may compensate for
the more involved formulation and solution technique required. Numerical
models formulated in this manner are called implicit models.

A combimation of the explicit and implicit formulations is sometimes used
in a numerical model. In this case certain variables are formulated and solved
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explicitly and other variables are formulated and So]ved implicitly. Numer-
ical models formulated in this way are referred to as explicit-implicit or
implicit-explicit models.

These two formulations would both require retaining values of h for all
cells at time n and n+]1 as the calculations proceed through time. If instead
of the previous formulations a centered time derivative were used, there
would be 3 different times involved in the formulation n-1, n and n+l1. In
this case, values of h for all cells at 3 time levels would have to be re-
tained in the computational process. The 3 time-level computational schemes
obviously require more computer storage than the 2 time-level schemes;
however, they have several attractive features primarily associated with being
able to express time derivatives using a central difference formulation. As a
result the 3 time-level finite difference computational schemes are becoming
increasingly important now that larger memory computer systems are becoming
more readily available.

Stability and Accuracy of Finite Difference Solutions

It is important to note that using the numerical algorithm gives a
solution to the finite-difference equation and not generally to the partial
differential equation from which it is modeled.  Therefore,

Difference Equations -————3 Approximate Solutions
Differential Equations ———3» True Solutions
and how close these solutions are to one another is called numerical accuracy.
There are several ways to formulate most differential equations in terms
of finite difference algorithms. Unfortunately many of the formulations will
not yield satisfactory results. The choosing of the most appropriate formu-

lations technique is one of the major problems facing an individual developing
a new numerical model. As Patrick Roache indicates in his book on Computational

Fluid Mechanics:” “The newcomer to computational fluid dynamics is forewarned:
In this field, there is as much artistry as science. ------- Seemingly minor
modifications of finite-difference forms, iterative schemes or boundary con-
ditions can result in large improvements. -------- One of the fascinating
aspects of computational fluid dynamics is the large number of plausible
schemes which do not work". These solutions schemes can generally be found

in either of three categories:

(1} Inaccurate Selutions;
(ii) Accurate, (close to) True Solutions; and
(iii) Oscillating, Highly Inaccurate {(unstable) Solutions.
To illustrate these three categories of solutions, again consider the
linearized wave equation. The explicit forward time, backward space formu-
tation of the equation will be considered, Equation (18).

As initial conditions for the example problem, consider the initial
(t=0, i.e., n=0) flood-wave profile as having an idealized triangular shape
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along the x-axis (j=1 to jj=11) and centered at grid point j=6 with scaled
height, h=1.0. (See Figure 13). It is also instructive to employ periodic
boundary conditions so that as the wave moves out the right-side boundary

it reappears at the left-side boundary. The calculations are run for a
sufficient number of time steps to cause the wave to return to its precise
starting position. Since there are no friction or dispersive terms in (12),
the true solution is a triangular-shaped wave which propagates from left-to-
right unchanged in shape and returns to the starting position exactly as
initially given. Any deviation from this result must be due to the numerical
scheme and parameters employed. Taking C=1 and ax=1,

C.=C—=—= or At = (C (%’S—):C

r AX r r

To travel the 10 ax distance will then require

nn(at) = nn(Cr) =10 (1)

where nn is the number of time steps. Thus for C

p. = 0.5, 1.0 and 2.0, the
respective values for at and nn are (0.5 and 20),7(1.0 a

nd 10) and (2.0 and

5}.
h' L
ol
0.5+ -
] 1 ! 1 I 1 L — X
i=l 2 3 4 5 6 7 8 9 10 It=jj
|d§x|
Figure 13. Initial Conditions, Trianguiar Flood-Wave Profile
Case 1 Cr = 0.5
From (18):
n+l _ n n
hj = 0.5 hj + 0.5 hj_]
or

hY + p"
h?ﬂ e

(20)
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and a few representative values can be easily calculated. The complete
results are given in Table I(a)} and reveal that the approximate, numerical
solution is diffused in that the peak amplitude is lowered and the wave is
spread out (dispersed). The wave peak remains in its proper position in
time so that the phase of the wave appears okay. This is an example of
numerical amplitude dispersion and the solution must be regarded as poor
and inaccurate.

Case 2 Cr =1.0

Equation (18) now gives h.™7 = h. ™ and Table I(b) shows the initial
wave shape propagating and undsturbed’as the solution surface and returning
exactly as it began to the starting position. This is identical to the
exact solution so that our approximation is the best possibie in this case.

Case 3 Cr = 2.0

Putting C. = 2.0 1n (18) gives

n+l n n
hj hj + Zhj_T (21)
and all computed results are shown in part (c), Table I. Oscillations set-in
and the result at T=10 bears no resemblance to the true solution. Such a
computation is completely useless for practical purposes. This oscillating
"solution" will continue to get worse as time increases and the difference
scheme with Cp. (i.e., at/Ax) so chosen is unstable.

A1l results at T=10 from Table I have been plotted in Figure 14 to
demonstrate the basic solution categories described above, i.e.,

(i) Inaccurate, Case 1,
(i1} Accurate, True Solutions, Case 2, and
{(iii) Oscillating, Unstable Solutions, Case 3.

Hence, accuracy is closely related to stabiTity, Case 1 was stable, yet very
inaccurate. In summary, to have the "best" approximation one must:

1. use the "best finite-difference scheme”;
2. wuse an optimal Cr=CAt/Ax to give optimal, yet stable conditions;

3. use "efficient” algorithms with regards to programming ease,
calculation time {CPU, times) and storage space on the computer.

Taking the true celerity, C equal to 1.0 in the above examples, re-
sulted in €, = At/ax = 0.5, 1.0, and 2.0. This parameter is seen to play an
important role in the basic solution category for the finite difference
equation.
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TABLE I. Results of Example Calculations

(a) Case 1 C_=0.5 (At = 0.5, nn = 20, T = (on) (At) = 10)
, h’.‘ + ph

n+l _ b j-1

hy " = [
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TABLE I. (continued) -
(b) Case 2 Cr = 1.0 (At = 1,0, nn = 10, T = (nn) (At) = 10)
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Figure T14. Comparison of Cases After Wave Return to
Initial Position

Consistency and Convergence of Finite Difference Equations

The Taylor series is a fundamental tool of numerical methods. With it
the truncation errors of any discrete, finite~-difference analog of the
continuum partial differential equations can be determined. How these analog
equations tend to zero as the grid cells are reduced in size indicates the
consistency of the scheme. Consider the finite difference representation of
the linearized wave equation given by Equation (16).

n+1 _ WD n n

. h h; - h;
Hg— + o Ty - o (16)
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Expand the values of h at time level n+1 and spatial location j-1 using a
Taylor series to cbtain:

n _.n. 3h" U (-ax)2 a3h ax)
hJ-] = hJ + (ﬁ)‘] (-aX) + (E'-X-z- oI + H.0.T. (22)

and
2 3
hg.”'] - h;.‘ (22 ) At + (atz). Azt' (& h) 3, + H.0.T. (23)
1

Putting (22) and {23} into (16) gives

j + ('B_%)J' at + (atz) i (gtg)j Y HOT,

Max _ ,53h" ax3
= nj - SXhG ¢ C g% O] - (ax) BR + (ax«) i (a—x!)j 3t 0T

Cancelling similar terms and dividing thru by At gives

5h a2h," at . a3h," at2
(sgﬂj + (sgr)j TN ( ) 37 *H.0.T.

- (2 ) o (2 ) ok ) ESPETRS

All terms are for any afbitrary point (j,n) so the subscripi and superscript
notation can now be dropped. Rearranging terms yields:

-TRUNCATION ERROR-

[

ah ah 32h at

32h 33h At? a3h ax2 |
et Ben-Cow ¢ H-0.T

M S YRRy s e T

>
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Thus by using the Taylor series in the finite difference scheme the original
partial differential equation is recovered plus additional terms which are

the truncation errors for the scheme given by Equation (16). Observe that

as the grid is shrunk and at, ax +0, then the finite difference scheme re-
duces to the partial differential equation. Also, there are no constraints

or conditions required on how the grid is shrunk so that the finite difference
equation is unconditionally consistent with the partial differential equation.
The truncation errors are of order 0{at,Ax) since these are the Towest order
terms occurring. If only terms of 0{at% ax?d appeared then the truncation
errors would disappear faster as at, ax +0. This would be a higher order
scheme. Truncation errors are ultimately responsible for differences between
numerical and continuum solutions and should not be confused with machine
round-off errors. The term consistency deals with relations between equations
in their continuum versus discrete forms.

Convergence is a familiar mathematical expression related to whether {or
how) solutions of discrete, finite-difference analogs approach the true
solution of the continuum, differential equation. Thus convergence deals
with relations between solutions as at, ax 0. If the sequence of solutions
tends to the true solution as at, Ax -0, then the solution of the difference
scheme is convergent. Using the triangle-wave examplie and the now familiar
finite difference scheme given by Equation (16), some approximate solutions
are computed for shrinking At and Ax to study the convergence concept. The
ratio Cat/ax, i.e., the Courant number is kept constant during the grid
shrinking process for convenience in comparing these results with those pre-
viously shown.

Case 1 Cr = (0.5

Initially consideration was given to At = 4, Ax = 1. MNow consider
At = %, Ax = %; then At = 1/8, ax = %, etc. The results plotted in Figure 15
clearly reveal how solutions are converging toward the true solution as At,
Ax +0. In this case the accuracy improves as the grid is shrunk.

Case 2 Cr = 1.0

This solution was exact and involved no truncation ervors.

Case 3 Cr = 2.0

Before,consideration was for At = 2, Ax = 1. Now consider At = 1,
Ax = %, etc., gradually shrinking both At and ax proportionately. The
approximation becomes progressively worse (Figure 16) since stronger
oscillations appear as At, ax -0. The solution becomes more unstable and
accuracy rapidly deteriorates as the grid is shrunk. Convergence, stability
and accuracy are closely linked. Observe that for a stable solution the
accuracy is increased by reducing At and Ax. It is incorrect, however, to
believe that numerical instability problems can be removed or accuracy in-
creased simply by using a finer mesh. As demonstrated by the example, the
relation between flow parameters and grid scales at, ax is important for
stability and accuracy. In our case the Courant number is the important
parameter. Other equations will have similar parameters.
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Basic Model Types

The governing equations for the generalized three-dimensional flow of a
fluid represent a complex system of non-linear partial differential equations.
A typical set of equations might be represented by:

CONTINUITY EQUATION

2+ 2 (ou) + 2 (ov) + 57 (ow) = 0

at  aX 3y 3Z
MOMENTUM EQUATIONS

au au au u - _1ap k2% 3%u 3%

st U Yyt oY Tax T o OxZ t a2 322

Wy v, Wi pu=-1238,K (BZV + §E§-+ 33%) (25)

at ax 3y 3z o 3y o ‘3xZ 3y 3z

.Q\!’_+ _aﬁ.;.v_a.‘ﬁ.(.w?ﬂ.s-lﬁﬂ.pk (32w+32w+gf_g)

5t * Y ax Y, z 6 8z  p ‘3xZ  yZ Bz

The formulation and calculation process for a three-dimensional numerical
model is involved. In addition, three-dimensional models require a large
quantity of prototype data for the verification and calibration process.

Fortunately many hydrodynamic events can be satisfactorily represented
by a simplified system of governing equations, rather than the generalized
three-dimensional equations. For example, for flow in a river, only the
river elevation and the volumetric flow rate passing a point at any time may
be of interest. Thus, only one spatial dimension is involved. This type
problem is illustrated in Figure 17. This problem can be formulated so that
only the variables Q (flow rate) and h (surface elevation) are dependent
variables in the probiem. A system of two equations, one momentum equation
and the continuity equation, are required to be solved to obtain a solution
of Q and h. This type problem would obviously have fewer finite difference
cells and would be much simpler to solve than the general three-dimensional
system of equations. This soTution will also fail to provide any detailed
variation of the velocity with depth or the velocity variation across the
river. However, if only flow rate and surface elevations are of interest,
then a satisfactory solution can be obtained from this model. This type
model is relatively inexpensive to operate and verify,
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Figure 17. One-~Dimensional Flow in a River

There is also a category of problems where the essential character of
the flow is two-dimensional. This problem is best illustrated by the un-
stratified tidal circulation problem. For tidal circulation flow in an
estuary or harbor, obviously the flow varies with position in the harbor.
However, as illustrated in Figure 18, in many cases there is relatively
tittle variation of flow across the depth of the water column and an average
velocity over the depth has some physical significance. This problem can
thus be formulated as a two-dimensional flow expressed in terms of U, V and
h, where U and V are average x and y components of velocity obtained by
averaging the velocity over the water depth. This problem will invoive two
momentum equations and the continuity equation. The problem is still much
simpler to formulate, operate and verify than the general three-dimensional
flow problem. At the same time, for those problems where the velocity does
not vary greatly over depth very satisfactory results can be obtained.
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Figure 18. Typical Velocity Distribution Across the
Water Depth for Unstratified Tidal Circulation
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The three-dimensional model is the most invoived. A three-dimensional
array of celis is required. There are, however, certain problems where it
is necessary to use a three-dimensional model to satisfactorily define the
flow field. For example, circulation in a lake is primarily due to wind
stress. The surface velocity in the lake is thus basically in the same
direction as the wind. The velocity, however, varies greatly with depth
and indeed the bottom velocity in the lake may be essentially opposite in
direction to the wind. This is illustrated in Figure 19. Obviously an
average velocity over the depth has Tittle physical relationship to the
actual velocity distribution. Three-dimensional models require large numbers
of finite difference cells, the calculation procedure is involved and the
model is difficult to verify.

WiND DiRgcTION
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Figure 19. Typical Velocity Distribution in a Lake

The simplest model which will yield satisfactory results should be used
in any modeting effort., Obviously a three-dimensional model could be applied
to a problem which is basically one-dimensional. However, if Q (flow rate)
and h (surface deformation) are really all that is important, use of a
three-dimensional model would not be justified.

Finite Difference Grid and Boundary Conditions
for Numerical Hydrodynamic Models

Consider applying a two-dimensional finite difference model to the lake
as shown in Figure 20. The first consideration is to determine an appropriate
finite difference grid, one which allows the satisfactory representation of
important physical features of the body of fluid. This process involves sub-
dividing the entire body of water into distinct cells as illustrated in
Figure 21. The appropriate "cell"” size is determined based upon a number of
considerations. Among the factors to be considered are:

1. The regularity or irregularity of the shoreline.
2. The width and regularity of any channels,
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The size and position of physical features such as weirs,
breakwaters, etc., which must be simulated.
The desired accuracy of the model.

The available computer facility. _
The available funds and time for the modeling effort.

- lLAanp—
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(b) Finite Difference Grid Positioned on
Physical System

Figure 20, Two-Dimensional Finite Difference Grid
Positioned on a Body of Fluid
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Numerical Model Boundary

Physical Boundary

Figure 21. Two-Dimensional Finite Difference Representation
of a Body of Fluid

In Figure 21 is illustrated a two-dimensional finite difference grid
representation of a body of fluid. The dotted line indicates the actual
boundary of the body of fluid while the heavy solid line represents the
numerical representation of the body of fluid. With finite difference
techniques one is normally limited to rectangular cells and the shoreline
must be approximated by a sequence of straight line segments. One must
keep in mind that the numerical model solves for the system bounded by the
heavy solid lines not the actual physical system. The model solution can
represent a solution to the actual system only to the extent that the finite
difference grid approximates the actual physical system. Obviously, as
illustrated in Figure 22, a smaller size finite difference cell will allow
a better representation of the physical system. Of course, the same is true
of an island in the body of fluid. The smaller grid and better representa-
tion is obtained, however, at the expense of having a larger number of cells
with which to work. This increases the computer time required to simulate
the physical phenomenon as well as greatly increasing the amount of initial
input data required for the model.

Every finite difference cell in the two-dimensional finite difference
grid of Figure 23 will typically require initial data giving the depth of
water for the cell, the frictional characteristic of the bottom material,
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whether the cell is land or water and possibly other data. As the numerical
simulation proceeds, the two-dimensional velocity components u and v and
surface elevation h are calculated (along with possibly other variables) for
every cell at each time level at which calculations are performed.

*if Numerical Model Boundary
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Physical Boundary

Figure 22. Finite Difference Representation of a Body
of Fluid (Using a Smaller Cell Size than in
Figure 21)

Regions where the depth varies significantly, such as a dredged channel,
may require a small cell size to represent the channel satisfactorily.
Since each cell has a depth associated with it you have a problem similar to
that at the boundaries. This is illustrated in Figure 23.

Some models have the capability to vary the cell size so that a large
cell size can be used whenever possible but with the capability of making
the cell size small in regions where it is required for proper resolution of
physical detail. This is illustrated in Figures 24 and 25.

The formulation problems for the variable cell size models are more
difficult but it economizes on the amount of computer time and input data
required to simulate a particular problem to a given degree of accuracy.

0f course, the maximum total number of cells which can be used in a
numerical modeling effort may be 1imited by the size memory in the available
digital computer. Each cell requires several memory locations for input data
and calculated results. The speed of the computer may also impact on the
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total number of cells which will be feasible for a study. Monetary and
time constraints also 1imit the size and number of cells which can be used.

Water is approximately 20'
deep everywhere except for
40' deep channel

Actual /1‘ et &

Channel

Figure 23. Representation of a Channel in a Fluid Body
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In most numerical models the program variables are defined at staggered
Tocations in the cells as illustrated in Figure 26 {a) rather than at a
central location as shown in Figure 26 (b). Defining the variables in this
manner facilitates imposing boundary conditions and formulating derivatives.
For example, in Figure 27 there is illustrated a cell adjacent to a land
boundary on one side. With the staggered definition of variables, the
boundary condition u = 0 at the land boundary is readily apparent. Also with
the velocity components as indicated in Figure 27 the derivative su/ax for
the shaded cell can be readily formulated as:

Up - U
du =r B A

3X [ AX ]
This is illustrated in Figure 27. This derivative for the cell is much more
apparent than would be the case if the velocity components were defined at
the center of the cell. A similar situation exists for other terms and de-
rivatives which occur in the governing finite difference equation.

-2
J
s
28

Staggered Definition of Central Definition of
Variables Variables

Figure 26. Variable Definition in Finite Difference Cells

. Most of the principles discussed in the previous paragraphs for two-
d1meqs!ona] mgde]s also apply to one and three-dimensional models. The
speg1f1codeta11s may vary but the same general concepts are valid for all
f1n1§e g1fference models regardless of the number of spatial dimensions
involved.
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U=o
u
- X
—4ax e AX —

Figure 27. Cell Velocity Boundary Condition

Calibration and Verification of Finite Difference Models

Finite difference models must be calibrated and verified before they
can be used with confidence as a predictive tool. The process of calibra-
tion consists of adjusting model parameters such as bottom friction, depths,
etc. to bring the numerical model into agreement with prototype data. Once
the model has been “tuned" or verified, these model parameters should not
change significantly for similar operating conditions. Verification con-
sists of appiying the calibrated model for a second set of prototype data
and demonstrating that the model correctly predicts the system behavior for
this different set of boundary conditions. The model can then be used to
predict potential changes associated with proposed modifications to the
physical system.

Typical model calibration curves are shown in Figure 28. This type

calibration would be necessary at a number of points in the system to insure
that the numerical model is properly describing the system behavior.

Model Appliication

An application of a two dimensional depth averaged finite difference
model is presented in Appendix A. This model application is an investiga-
tion of the effects on flood stage elevations produced by a railroad, built
on a fill, crossing the flood plains above Mobile Bay.
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APPENDIX A

NUMERICAL COMPUTATIONS FOR ESTUARINE FLOOD PLAINS

By Donald C. Raney1, John N. YoungbloodZ and Hasan Urgun3

INTRODUCTION

Freshwater inflow, an essential component of estuaries, can produce
significant problems during periods of large inflow. The highly variable
nature of many estuarine river systems, the geometry, topography, and
bathmetry of the estuary and the interaction of local winds and
astronomical tides produce a hydraulically complex environment. Man's
tendency to cluster around estuaries for food, transportation and other
needs invariably results in construction on the flood plains. The result
has often been periodic flooding problems at times of major flood events.
Numerical models offer potential for improved environmental impact
agssessment of construction on estuarine flood plains.

Over the past ten to fifteen years, numerical modelling of
hydrodynamic systems has become an established science. A variety of
numerical models are avallable based on both finite difference and finite
element formulations of the basic governing equations. Hydrodynamic
systems are basically three-dimensionalg however, for many situations
conditions are such that the flow can be satisfactorily approximated by a
simplified set of governing equations. The two dimensional depth averaged
model has been shown by a number of investigators (3, 4, 7, 10, 11) to
satisfactorily represent flow in an estuary or bay when the water body is

not atratified.

1. Professor of Engineering Mechanics, The University of Alabama, Tuscaloosa, AL
2. Professor of Mechanical Engineering, The Unlversity of Alabama, Tuscaloosa, AL
5. Graduate Research Assistant, The University of Alabama, Tuscaloosa, AL

A~1
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The present contribution presents a specific application of a two-
dimensional depth average finite difference numerical mddel for flood
plain investigations. Flooding problems which exists on Bayou Sara, a
bayou on the flood plains above Mobile Bay, are considered. A railroad
constructed on a fill crosses the flood plains with trestles at major
streams. Because of the location of Baycu Sara relative to the railroad,
some speculation exists concerning the effect which the railroad has upon
flooding problems which are encountered along the bayou. The numerical
model is used to investigate the influence which the railroad exerts on
flood stages along Bayou Sara. The model is partially calibrated and
verified uaing available prototype data for known flood events. Boundary
conditions are used which produce a range of possible flood events. The
two year, five year, ten year, twenty-five year, fifty year, one hundred
yeer and five hundred year probability flood events are of particular
interest. For each flood event the model was applied for existing
conditions and also the condition without the railroad on the flood
plains. Differences between flow patterns, flow rates and flood stage
elevations are documented. From these differences an assessment can be
made of the railroad influence on flooding along Bayou Sara.

The numerical model has general applicability to similar flooding
problems on estuarine flood plains. Availability of accurate medel input
data and flood stage water elevations for model calibration and

verification is generally the limiting factor oan the accuracy of results.

THE NUMERICAL MODEL

A complete mathematical description of the hydrodynamic flow in a

harbor, bay or estuary would require that the velocity and density be



completely specified for every point in the system at all times:
u=1u (x|Y9z!t)

p (x!yizit)

p =
where
¥ = longitudinal coordinate measured along the estuary axis
y = transverse coordinate
Z = vertical coordinate
t = time

Because of the difficulties in formulating, executing and verifying a
three-dimensional model, researchers have devised a variety of numerical
models of various degrees of simplification.

A two-dimensional depth averaged model (BAY) is used in this
investigation. The vertical components of velocity and acceleration are
neglected and the general three-dimensional governing hydrodynamic
equations are integrated over the water depth. A pseudo-three-dimensional
effect is present since the equations are forced to satisfy the boundary
conditions at the bottom and surface of the water column. A deoth-
averaged two~dimensional flow field is obtained but three-dimensionzl
geometiry can be considered. The most important approximations used in the
model are those of constant density and relatively small variations of
velocity over the depth, conditions which should be reasomably valid in
the Mobile Bay delta. Where these conditions are approximately valid,
this type of numerical model can provide accurate representations of tidal
elevations and velocities.

The rectangular coordinate system is located in the plane of the

undisturbed water surface as shown in Figure i. The equations of motion



and the equation of continuity are written as follows:

%% + u %% + v %§-+ g %ﬁ-— fv = Rx + Lx
%+u-§-§+v%+g-§%+fu= R+ L
and
24 [henul + 3 [henvl =0
where
u = depth-averaged velocity comoponent in the x-direction
t = time
x,¥ = rectangular coordinate variables
v = depth-averaged velocity component in the y-direction
€ = acceleration due to gravity
n = water level displacement with respect to datum elevation
f = Coriclis parameter
Rx’Ry = the effect of bottom roughness in x and y directions
Lx’Ly =the effect of the wind stress acting on the water surface

the x and y directions
h = water depth
The continuity equation has been obtained by integrating acroas
water depth and applying kinematic and dynamic boundary conditions at
surface and bottom of the reservoir. The bottom friction terma

represented by:
R = -gu(uzi-vz)%
X C~(h+n)

- —gv(uz-i-vz);i
y C (h+n)

(1

(2)

(3)

the

the

are

(4)

(57

where C is the Chezy coefficient. The wind stress terms are of the form:



T

X .
T (6)

T
=Y _
y (h+n)
where Ty and Ty are the wind stress components acting on the water

L (D

surface.

A major advantage of BAY is the capability of applying a smoothly
varying grid to the given study region. This allows efficient simulation of
complex geomeiries by locally increasing grid resolution in critical areas.
For each coordinate direction, a piecewise reversible transformation is
independently used to map prototype or real space (x,y space) into a
computation space (o1, @y space). The transformation takes the form

x=a+ ba ' (8)
where a, b and c are arbitrary constants. By applying a smoothly varying
grid transformation which is continuous and which has continuous first
derivatives, many stability problenms commonly asaocciated with variable
grid schemes are eliminated provided that all derivatives are centered in

space (17). The transformed equationa in space can be written as

Ju 1 Ju 1 Ju g -3n :
—+ —y — + = + - =R +1L 9
3t T U1 " 90y Up v daz U] day fv ps X 9)

v 1 3v 1 3v & 9n
—t—u——+ = + + fu=R_+1L
ot my “ da]  HUp M day Uy dap b y y (10

en 1 38 A 3 = _
vl o Fa [(h+n)u] + oy 3up [th+n)v] =0 (11)

To sclve the governing equations, a finite difference approximation
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of the egquations and an alternating direction technique are employed. The
solution scheme is similar to that proposed by Leendertse (6). A space-
staggered scheme is used in which velocities, water-level displacement,
bottom displacement, and water depth are described at different locétions
within a grid cell as shown in Figure 2. Central differences are used for
evaluating all derivatives in the governing equations. The application of
these difference approxiﬁatidns gives rise to corresponding difference
equations centered about different points within a grid cell. These
expressions require the evaluation of certain quantities at locations
different from those defined in the grid system. Such quantities are
replaced by values computed from one- and two-dimensional averaging of
neighboring values.

Three types of bﬁundaries are involved in the calculations: solid
boundaries at fixed coastlines, artificial tidal input boundaries arising

from the need to truncate the region of computation and river inflows into

the bay.
The boundary condition for the solid boundary can be written as

V=0 - (12)

-
where V, denctes the normal component of velocity. Artificial tidal

boundaries were used in the model to describe the tidal action that occurs

at the bay computational boundaries. The water surface elevation-time
history for the desired tidal cycle is specified at each such boundary and
applied during the operation of the model. River inflow boundaries are
required to simulate the river hydrograph for these significant streams

discharging into the study region.

MOBILE BAY DELTA SYSTEM




Mobile Bay‘is the terminus of the fourth largest river system, in
terms of discharge, in the contiguous United States (8) and the sixth
largest on the North American Continent (5). The river system discharging
into Mobile Bay is a complex one as is illustrated in Figure 3. In
simplified form, the river system can be considered to start at the
confluence of the Alabama and Tombigbee Rivers where the Mobile River is
formed. The Mobile River then divides into the Tensaw and lower Mobile
Rivers. Both of these rivers branch many times producing a complex
network of major channels, creeks, and bayous. The river system flows
over a flood plain which extends for over 30 miles south terminating at
the northern end of Mobile Bay.

The average discharge of the river system {1929-1978) into the bay is
approximately 64,100 cfs (1815m>/sec) (10). The monthly average
discharges have a high flow in February, March and April and a low flow
period between June and November.

Significant flooding is considered to occur when flows exceed
approximately 247,000 cfs (6994m3/sec) (13). A table of probability
floods is shown in Table 1. At the delta-bay interface the lower Mobile
River and three distributaries, the Tensaw-Spanish River, the Apalachee
River and the Blakeley River discharge into Mobile Bay. At the upper end
of the study area, I-65 cuts across several water bodies, the Mobile
River, Little Lizard Creek, Mifflin Lake, the Middle River, and the Tensaw
River. Between the boundaries for the study area lies a great deal of
flood plains with an elevation only a few feet above mean sea level.
During flood conditions great deal of water is stored on these flood

plains. There have been several general studies (12, 14, 15) of the marsh



A~§

flood plain areas and the effects of river flooding in Mobile Bay. Little
attention, however, has been focused on flooding problems in the delta
region.

The railroad generally follows a northeast to scuthwest path across
the delta which basically has a north-south alignment. As indicated in
Figure 3, Bayou Sara is located in the west-central region of the delta.
The geometry of the system suggests that the railroad might have an effect

on flood stage elevations along Bayou Sara.

THE FINITE DIFFERENCE GRID

The finite difference grid, Figure 4, used to model of Mobile Bay
delta system was developed using a 1:24000 scale nautical chart (16). A
variable grid was defeloped with the primary objective of good resolution
of the main river channels and the area around Bayou Sara. A reasonable
representation of other geometric and bathymetric features of the area was
established. The dimension of the resulting grid was 78 by 38 cells or
2964 cells. After mapping the grid, it was used as an overlay on the
nautical chart to assign boundaries, depth and Manning friction
coefficients for each finite difference cell. A set of aerial photographs
(11) of the delta region taken during February 1982 was also useful in
developing the finite difference grid and other input data for the
numerical model. Information on construction details of the railroad
across the flood plains was alsc used in establishing the finite
difference grid. The manner in which the grid represents the major
channels in the study area is illustrated in Figure 5.

The smallest cells were used in representing the area around Bayou

Sara since this was the region of primary interest. Small cells were also



used for the major river channela. Larger cells were used on the flood
plain areas where the bathymetry was reasonably constanf and/or boundary
geometry was relatively simple. The smallest cell size was 500 feet and
the maximum depth was approximately 45 feet.

Elevation boundary conditions were specified at the Mobile Bay
boundary and upstream at the I-65 boundary. The Mobile Bay elevation is
primarily dominated by the tide while the elevation boundary condition
specified at I-65 is representative of the flood stage. An elevation
boundary condition was applied at I-65 rather than a flow boundary
condition because of greater accuracy in imposing the boundary condition
in the numerical model.

Depths were asaigned to each water cell as delineated by the land
boundaryQ The depth of each cell was determined as a weighted average of
the charted depths within that cell. Because of‘a lack of bathymetric and
topographic data for the flood plains, most of these areas were considered
to have the same elevation. In areas where the finite difference cell is
larger than the actual physical dimension, cell depths were reduced in the
model to make the flow cross-sectional areas approximately equal.
Manning's n friction values for bottom roughness were assigned on a
relative basis according to the bottom type specified by the nautical
chart.

The datum of the nautical chart was the National Geodetic Vertical
Datum of 41929 (N.G.V.D.). All elevations used in the study were
established relative to this datum. Most of the flood plains are only
slightly above the N.G.V.D. reference in elevation and are flooded during

the flood events to be simulated.
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MODEL CALIBRATION AND VERIFICATION

A numerical model must be calibrated and verified before a great deal
of confidence is placed in the model results. Calibration consists of
demonstrating that the numerical model can be adjusted to produce results
which are consistent with a measured prototype data set. Verification
consists of applying the calibrated model and reproducing a second set of
prototype data to a reasaonable degree of accuracy.

For this study one relatively complete set of prototype data (9) was
available representing high water elevations around the delta region for
the flood event of March 1979. This data set was used to calibrate the
model. A partial data set (9) of high water elevations was available for
the Spring 1979 flood event. These data were used to provide a limited
verification of the numerical model. .

The measured high water elevations at I-65 provided a basis for
establishing the northern elevation boundary conditions for medel
calibration. The tidal elevatidns measured in Mobile Bey provided the
boundary condition for the southern boundary of the model. The model was
started with a constant water elevation throughout the delta region
including the flood plains. The boundary conditions were then allowed to
gradually change until the desired flood condition was reached in about 18
hours. The boundary conditions were then held comstant for approximately
6 hours so that a quasi-steady state condition was reached in the model.
For a more detailed study actual river hydrographs should be used as the
river boundary condition. Flood stage elevations at 13 locations in the
delta region and the system flow rate were the primary variables used in

establishing model calibration and verification. The special gage point
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locations are shown in Figure 6.

The calibration and verification process was continued until
agreement was reached between the numerical model and the prototype data
sets. A vector plot of the flow pattern for the calibration run is shown
in Figure 6. Observe that most of the flow follows the channel with only
small velocities on the flood plain areas. Additional results from the
calibration and verification proceas are shown in the next section of the
paper along with other model results. An average height of 1.9 feet above
N.G.V.D. for the flood plaine appeared to produce the most satisfactory

results. Manning n values between 0.021 and 0.07 were used.

MCDEL APPLICATIONS AND RESULTS

The numerical model was applied for a range of upstream elevation
boundary conditions. The lower boundary condition, dominated by the bay
tide, was maintained as that used for model calibration. Different
upstream boundary elevations were selected to produce flood events with a
range of flow rates between approximately 200,000 cfs (5660 m>/sec) and
800,000 efs (22,700 m3/sec). This range of fléw rates contains the 2
year, 5 year, 25 year, 50 year, 100 year and 500 year probability flood
events. In each case, the starting condition for the model was an initial
constant water elevation and zero velocity in the delta region. The
boundary conditions were then allowed to change to produce the desired
quasi-steady state flood event in approximately 24 hours. For each set of
boundary conditions there were two model applications. The first model
application was for existing conditions; i.e., with the railroad crossing

the flood plains. The railroad fill was then replaced by flood plains
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with friction and depth characteristics similar to surrounding areas.

Figure 7 illustrates the calculated flood stage elevations at one of
the special gage points in the delta system as a function of flow rate.
Results for existing conditions and for the without railroad case are
presented in the figure along with prototype data used for calibration and
verification. The numerical model was found to be in general agreement
with prototype data for the entire delta region. The railroad does not
appear to produce large changes in flood elevations at any of the points
in the delta region where prototype data were available. The largest
effects at any of the special gage points are in the Bayou Sara area, but
even here effects are small compared with the overall flood stage
elevation.

Sample vector plots of overall flow patterns in the delta region are
presented in Figures 8 and 9. Figure 8 is for existing conditions while
Figure 9 represents the flow pattern if the railroad did not cross the
flood plains. These plots clearly indicate that most of the flow passes
along the existing channels regardless of whether the railroad exists or
does not exist on the flood plains. There is a great deal of water stored
on the flood plains, but there ia not a large quantity of flow along
(north to south) or across (east to west) the flood plains. The large
friction and small depth conditions on the flood plains are not conducive
to large flows.

Representative contour plots of floocd stage elevation in the delta
region are presented in Figures 10 and 11. PFigure 10 is for the existing
condition and Figure 11 is for the case without the railroad on the flood
plains. These contour plots indicate that the railroad does produce

significant differences in flood stage elevations within the interior of



A-13

the delta region; there is almost 2 ft (0.61 m) differences in elevation
across the railroad fill in some locations. Figure 12 represents a
contour plot for the difference in flood stage elevation which can be
attributed to the railroad crossing the flood plains. Some large
differences are observed in the interior of the delts but only relatively

small differences extend to the boundary areas.

CONCLUSIONS

The numerical model was calibrated and verified to an extent
consistent with the objectives of this investigation. The flows in the
delta region are found to be primarily within the existing channels with
only a relatively small percentage of the flows along or across the flood
plains. Significant differences in flood stage elevations are produced by
the railroad within some interior regions of the delta; i.e., across the
railroad fill. However, these regions where significant effects are
observed are confined to restricted regions within the interior of the
delta. The effects are relatively small around the boundaries of the delta.

Based upon the numerical model results, the increase in flood stage
elevation along Bayou Sara is small compared with the overall flood stage
elevation. Below a system flow rate of 200,000 cfs (5,660 m3/sec) there
13 a negligidle effect caused by the railroad. On a statistical basis, a
200,000 ¢fs (5,660 nJ/sec) flow rate corresponds to a flood event which
should occur once each year. The railroad effect at Bayou Sara increases
up to approximately six to eight inches (15.2 to 20.3 cm) for a flow rate
of 700,000 cfs (19,800 m3/sec). A 700,000 cfs (19,800 n3/sec) flow rate

corresponds to a flood event which has a 500 year statistical rate of
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occurrence. The effects of the railroad on flood stage elevations along
Bayou Sara is therefore small compared with overall floocd stage

elevations.
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TABLE I

FLOW RATE - EXPECTED PROBABILITY DATA FOR MOBILE RIVER AT BARRY STEAM PLANT

(BUCKS, ALABAMA)

STATISTICAL RATE OF OCCURRENCE (YRS) EXPECTED FLOW RATE (CFS)
2 284,000 ( 8,040 m3/sec)

5 371,000 (10,500 m3/sec)

10 425,000 {12,000 m3/sec)

25 491,000 (13,900 m3/sec)

50 540,000 (15,300 m3/sec)

100 588,000 (16,700 m3/sec)

500 700,000 (19,800 m3/sec)

A-15



APPENDIX I - REFERENCES

10.

11.

12.

13.

Aerial Survey Photographs by Continental Aerial Surveys under contract to
U.5. Army Corps of Engineers, Mobile District, February 22-26, 1982,

Bault, E.I., "Hydrology of Alabama Estuarine Areas - Cooperative Gulf of
Mexico Estuarine Inventory”, Alabama Marine Res. Bulletin 7, pp. 1-36,
1972.

Butler, H.L. and Raney, D.C., "Finite Difference Schemes for Simulating
Flow in an Inlet-Wetlands Sytstem", Proceedings, 1976, Army Numerical
Analysis and Computers Conference, Report 76-3, pp. 471-508, Army Research
Qffice, Research Triangle Park, NC, September 1976.

Butler, H.L., "Evaluation of a Numerical Model for Simulating Long-Period
Wave Behavior in Ocean-Estuarine Systems”, Estuarine and Wetland Processes
with Emphasis on Modeling, Marine Science Series, Vol. II, Plemen Press,
New York, 1980.

Chow, V.T., Handbook of Applied Hydrology, McGraw-Hill, New York, 1968.

Leendertse, J.J., "Aspects of Computational Model for Long-Period Water-
Wave Propagation”, RM-5294-PR, Rand Corporation, Santa Monica, CA, 1967.

Leendertse, J.J., "A Water-Quality Simulation Model for Well-Mixed
Estuaries and Coastal Seas, Vol. I, Principles of Computation, RM-6230-RC,
Rand Corporation, Santa Monica, CA, February, 1970.

Morisawa, M., "Streams, Their Dynamics and Morphology, McGraw-Hill, New
York, 1968.

Package of data on floods and L&N Railroad provided by U.S. Army Corps of
Engineers, Mobile District.

Raney, D.C. and Butler, H.L., "Landslide Generated Water Wave Problenm",
Journal of Hydraulic Division, ASCE, Vol. 102, No. HY9, Proc. Paper 12425,
pp. 1269-1282, September 1976.

Reid, R.0. and Bodine, B.R., "Numerical Model for Storm Surges in
Galveston Bay", Journal of Waterways and Harbors Division, ASCE, Vol. 94,
No. WW1, February 1968, Proc. Paper, 5805, pp. 33-57.

Schroeder, W.W., "The Impact of the 1973 Flooding of the Mobile River
System on the Hydrography of Mobile Bay and East Mississippi Sound",
Northeast Gulf Science, Vol. 1, No. 2, pp. 68-75, December 1977.

Schroeder, W.W., Riverine Influence on Estuaries: A Case Study, in M.S.
Wiley (ed.), BEstuarine Interactions, Academic Press, inc., New York,
1978, pp. 347--364.

A-16



A-17

APPENDIX I - REFERENCES (comtinued)

14.

15.

16.

17-

Schroeder, W.W., "Dispersion and Impact of Mobile River System Waters in
Mobile Bay, Alabama", Water Resources Research Institute Bulletin 37,
Auburn University, August 1979

Stout, Judy P., “"Marshes of the Mobile Bay Estuary: Status and
Evaluation”, Symposium on the Natural Resources of the Mobile Estuary,
Alabama, pp. 113-122, May 1979.

U.S. Geological Survey 7.5 Minute Topographic Maps, 1:24,000 scale
(Bridgehead, Chickasaw, Hurricane, Mobile, Bay Minnette North and the
basic of quadrangles).

Wanstrath, J.J., Whitaker, R.E., Reid, R.0. and Vastand, A.C., "Storm
Surge Simulation in Transformed Coordinates, Vel. I - Theory and
Application”, Techmical Report 76-3, U.S. Army Coastal Engineering
Research Center, CE, Fort Belvoir, VYA, November, 1376.



LIST OF FIGURES

Figure 1. Coordinate System for Problem Formulation
Figure 2. Grid System and Variable Definition Locations
Figure 3, Mobile Bay and River Delta System

Figure 4. The Variable Size Finite Difference‘Grid

Figure 5. Representapionof Major Channels by the Finite
Difference Grid

Figure 6. Vector Plot of Velocity Pattern in Delta Region
for Calibration Condition

Figure 7. Flood Stage (N.G.V.D.) on Bayou Sara (near
Satsuma)} as a Function of Flow Rate

Figure 8. Overall Flow Patterns in the Mobile Bay Delta
Region for a Flow Rate of 504,327

Figure 9. Overall Flow Patterns in the Mobile Bay Delta
Region (without the L&N Rallroad) for a Flow
Rate of 518,636 cfs

Figure 10. Flood Stage Contours (in feet) in the Mobile Bay
Delta Region for a Flow Rate of 504,327 cfs
(1 ft = 0.305m, 1 efs = 0.028 m3/sec)

Figure ll. Flood Stage Contours {(in feet) in the Mobile Bay
Delta Region (without the L&N Railroad) for a
Flow Rate of 518,636 cfs
(1 ft =3.05m, 1 cfs = 0.028 m3/sec)

Figure 12. Differences in Flood Stage Elevations in the Mobile
Bay Delta Region as a Result of the L&N Railroad
for a Flow Rate of Approximately 510,000 cfs '
(1 £t = 0.305m, 1 cfs = 0.028 m3/sec)

A-18



DISPLACED WATER
SURFACE

INITIAL RESERVOIR
SURFACE

Figure 1. Coordinate System for Problem Formulation

A-19



Figure 2.

k-1 k k+1

O WATER DEPTH, h

¥ WATER LEVEL DISPLACEMENT, R
[0 VELOCITY IN THE X DIRECTION, u
Y VELOCITY IN THE Y DIRECTION, v

Grid System and Variable Definition Locations

A-20



Alabama River

T
Tombligbee
River

Mobile
River

1-65
™
LoJ«er Tensaw
_iRiver

SCALE: Miles
0 5 10 ]
" : n i \/ i
' Mobile River
! \ A ﬂysiem Delta
{

— 31700

CityLoL.
Mobile )‘ -~
O
Ragged Point
Dog River
East Fowl
- 30° 30 River Great Point Clear -
MOBILE Mullat
BAY Point
=
East G ons Bon
ne'! Secour
Bay )

Mississippi
Sound av*
Pa'js % ‘,s_,
ﬂ @ / dz
88100' GULF OF MEXICO

Mobile Bay and River Delta System

Figure 3.

A-21



I MAJOR CHANNEL CELL

FLOOD PLAIN CELL,

LEGEND!
3 LanD CELL,

N VNN X
7/%///%7/“7/,;”@.1/5 7/7/ <
A N NN
AR N e TN ] HENNN A q
T T R R NN M=
Y A AR R R R~ TR AR //w//,/%ﬂ//,//% et

Q B NN A R SRR Db b r NN MR /ﬂ./// " A, /f/.ﬂ) S ..//./
A A N N RN TR SN AN o N SR SNSTNNANN N A e SN AN
R A RN S AN TSRS RISHEENIAEH TR A RS AN St A0 1Y TR N N A SR NN N
R A AN A et R R SI AR SER AR ST USSR U T SN EN SO AN 8 AN N T 1\ bbot O
R NANE 3] ERRSAARSISINIRNR a;@ w/u RN .,MWW,,/,Awu,.,/., w’ //,

R R A N N NN Y N AR TS NE NI aTRiN AT E S R AN S AR AT Y SR et NUSR AN R AN AN AR AT NN

e " J - N \] " e "~ Nt XY W o

B T R R R R R N NN e R SR 2

et FELAY A RN AR N NSRRI AAL) ,_‘M// /,///w,..,u//m TSN Mwwv f/M

A A A A A A NN SR N EREe ARN A TN A AN AR TN AN # RIS Sy A

A AT AN w% R A RN TR T SRRRRREL AN N
/ﬁ/ﬂWH .ﬂ///”/ AV//A /u//yﬁ ////.0 h.;, ”,./ NN SR N 7/0.%[%””@/4/#'%4 % TR /./ ifﬂﬂlxa// )
HUAN ANSNR SN R AR AN AN RDNNRINNGS
- 31 XTI " Y N . W

RN R RN TR R HEHENE, TN e R e, TR NONNY

RN SRR TN RRRANEAR . T HRR
QNN N - NN NRE SR r i \ N N v i
AN g AN e 1S IREN TN RN R _.,/.4,. MY
DO AN 1318 £3113 EHSHAP IS SO \. X NI SN
O RN Y R RN AN Nl N 711
%/w%mwx/nf W&M/,uu./,”ﬁ S N K /fﬂy NN _‘V/VW N o
A N N N N S AN NN A NN .
/0 NOLUSN SRASNS ANy ,/f///,///.f.“.l.. hﬂ”/ﬂﬂ;#y%/ ...vlw ?
RO RNSSRRRAN Y SERNN N N S
NSRRI Y %Ww%:@ﬁ R Y T - ravobi o
PR T oo I R e Ay - e
. N SN SRR P
4 aass a3 2 WS DA ATAX BAIAR AN ATANKN CIANKN el )
| 7,.k ,u_ ncwMOW//f W(#@H
PRI DR 10 10 NN O ONAN SN AN XN ¥ AN
BRSNS ,m,.y, RN NI AN RN AN S AN
ARE EEILE N AN AR AN AN AN AN ;
p.wzo/a}wﬁzﬁg N

A-22

The Variable Size Finite Difference Grid

Figure 4.



«lydvS Noave

-
)

HIAIH MYSNIL

e S

MOBILE

BAY

Figure 5. Representation of Major Channels by the Finite

Difference Grid

A-23



A- SPECIAL GAGE POINT

TENSAW

RIVER
RIVER

IR T I T
- . » - . - \.]ulll.!ll."-l\n..-oq Teranrangpnpsd af
e ey

’ H ul.-o--:u v o 8 - - .
L T I R R 'k /._..-:.: sy b v . .
. A

NS

-

# g o ot

+

TENSAW

"/'MVER

MOBILE
RIVER

" A

N T L LA T L T (YA IS T
cn--t--.lnA—b!‘!‘j.o-. - .

R 4

Y N AN R A . e
....... v SR SO S
.-...q.-...........s.N.& ety wwR et ’

...... e

3 wTERE

niv-------.--.-—a.r\-r..co- LI I

o--.-/:’i!”d{ll‘\-. P

PR} -q fansamavronarasas

RS T -.-el-fl’—-fl-lo

Sy A ytemesn -\}v.v:.

. /it--.--.o:.- —:—vfc-A\Al f'/-l -

FA N AN AR IREEAANINEIINNNRRe s b s 2 2 T T

T TN R I T T I L L I \A

TENSAW
RIVER

.
-
e
> 4 -
’ .
‘. v
‘
-

. .

S

L]  w
- L]

. s

o

* e s

CHICKASAW . .-

BLAKELEY
RIVER

LB « "
W y w o
Ny 4 v .o ’
e e '
Ty e e v e s
L A
P
. . R
..... [
. L]
PR PR R | .
» .

a0

‘,\'ﬁ

_ Hwy g0~

MOBILE

Vector Plot of Velocity Pattern in Delta Region for
Calibration Condition

6.

Figure

A=24



3jey moT4 3O uoriduUng ® ee (ePwnsileg aeau) eaeg nofeg uo ("Q A'9°N) 98mig pooTg WACETEA

{sSdD)] =ZoavEMNMOTE JIHLINATON
cOL X

=] =) > =] 0
) | 1 D
=
¢

]

Km !

A\«\\\ =
oL

SNOILIONODT S9ONILLSIXZ "o Y.iva Dmﬁjq.Wd..\m_ED
OvOHTNIYH N9T LNOHLIMNMY

SNOILLIONOD SNILSIX3 O

(L= 20>0)

L1000 uk-qBu

A-25°



A - SPECIAL LALE FuUnivNg

. v e
. . R
L] » L] L] LA .
Pl . ¢ - l-/l‘l“.‘d.
- ’ [ “et
. L I R
P N T TR 1SR R RS S T I B v
prea— e I L R L TR T R AL DL O PP TV ST /'I"xr- v . D e R L T L B S A S .
- ¢ a e 0 = \\!I.'I".“l-t\looc: I I T T Y Y R . ! e, v ® o eyt e 3 N T v & ey =y oy = . .
\I‘I“Itn.-i‘f!‘luﬁ-v:-:v:-v-r-\. I I . au R I T . - o
L R N B R R ) SENBANBMREIND S T T e a1y mm —w oWy -a.-n—o.o..-- L ) . . L,
rr
2
* 3§ ® p v eEE L awsegepEerrnEnp)? e e *w [ . N 3 y * -cc-u. PP I T S ] . . » m:
T L L T A Y L T T R A I I A A N L T
---oo...v-o-cc.-o\\l& PV LT I I U B T T S T S S I SR BAE B SN ST W vt s 8 8 o & a 0 . v . .
--c-lno--o-a-ao\\l\..... BT L T T S I R TN I S A B S . . »
. l-lll.looloactu-l\.n-cn.-.- LT RN SN B . » O T T T B L T L T . . . . . .
- - ll-o-c-o\c\o.s-...:-. cisee P . s . - PO B R A | . . . . ' . -
N 1w - von S
/f-o|-no---‘-.-.o..-as-:. ..-.-f—-.. L T T A O O L R EE A AL IR T T e . ] N ]
- . /tvl...o..aaloch-|o-a--.::-.:. ....fw. S I e e AL L N ] ’ [ +
. 0y /.l(-f.ltloIl\-\l‘\lllclc\j-rv'!— L LR b . . 0 L P S R R R T . (3 . . *
s & ®w B f{ivv-..-;-n-tlwp—'rllfv \ I./l‘l! L N T L T T I A B L * - L b * M
LI N olll-rcvf/fl--tvsnolo.t'wfvc’.lli L Ly ot L L L I I S R L . - -
[ noacalln!--.rllf‘ii-(lliflf\a‘l\l-- ] L ~ % * " -n.-l-lll.lnlltl.-\l.llt - [ ]
I G N N T AT S L LI T e AL B N I Y ! - i"‘llAl P e e L b TR ] . . [ .
 E A3 AN EIINNENYRRNRRRLRENR R b b 4
B RN R R R ARSI CIRRREEE Y A L - - .
.-.—.-..-.::.:di-:.c\ui\- [ .
__....-.--'-o-.-.-....l.‘.l‘ol\o- L L e * .
Y L L TR R R S I T B
Y I T T L AL LR R T I I B S ) . ] LI T )
L . L] - . . . L] - a [
« 0 0 v ow w . . ) . . « »
N P T T S T T R BT R
[ L I T T T T TR T Y
L N I )
I I R
LI ) - * L] - L L] » L] - +
*

23S /14 60°L = ALIDOTIA  WNRWIXVH

in the Mobile Bay Delta

Region for a Flow Rate of 504,327

Cverall Flow Patteruns

Figure 8.

A-26



A- SPECIAL GAGE POINT

- a = lii-c.c.-\!- LIN LN LY LT aee

- l!l!l.l.ll.‘nvl\t bt A S I T T TN N “

® e w e wS bt

L N R TR I IO
5 r e s vsnrrunwnnptef il u e
T e e v eseserarne, Al iunancionenn
L B L T
D T T T

L B R --llalcoc-oonlnulcu

N “mww llo.l\\!llllfinnuccnbnl.l.llllul

e Don R | L o u&-v-o--v-: [ I
*

...._...

L f L
i

"y s

.

.

SRR

W

.- »™ /*‘"‘.

. =————
L B

LY T T I YT Y N B Y

- - -n-.c--oc--q--“a, lvld!-!\a\tq > e

hamans o= ol IO

[N A I R l\.l\l!lllt\-!j.-lcl,cc- .. AL

. ¥ @ fiivtdplc\-uavl-’utvdi

LI I lll-.a://r’lv.'lu\lll!l!/f.vll'

G-A.. V\A-illl/l.'

-, ‘\-..a.{/

Tt T ——— s

R B R S T LT T

AR AL T 1Y I TN T Y
AR RN I RS ST NN NS PN W

I N R R Y AL LA S ]
NERIB RN (et Ner bt s u
LR T e L LRI I B}
A-.-q--o-.-ll--c-u
R T YT I

-

L]
»
-
-
.
.
.
.
)
.
.
L]
)

L)

.---...---.A\-‘

= 2 e a4 oaa=a

1

L

= % s e seaaoa g

4 s * 224 veasn

L)

L] L]
- -
e e
[ Y
+ » »
] LI
) » .
s s
. . -
. . »
I
* r 1)
- v »
.y »
R T
b Bt AL
r vy
» L] -
L
LI T
. s
LI
. * -
L] L] L)
. . L]
L] L] L]
L] L] L]
LI
. . -

It.lll.!’l“{!ll—...udnlnu.

n\‘-.c-df{.‘l}!!-\‘]‘n‘lo .

4

L A N

hY

WL S ) e

T F s e e g g

.ll-u-n\-o—l'ullu.- . - -
.ca-_-‘--..- LI . .
DSt IR I I R R R

i
L T I R

» 8 s 8 "- * a8 8 [] . . L] .
L L T R A L T . - - .
L A LR L] .
L R R R R R I N e T T ¢ .
L L R R L .
L TN L L T ]
L T - I +* » . »
L T T T I T RSN T RN B ’ . - - - -
LR S L T B B A R I T R T S - - - » -

LI S

Ll B N

,J/.t-o-

035714 98°9 = ALID0TIIA WNWIXVIW

iom

the Mobile Bay Delta Reg

ilrocad) for a Flow Rate of

in

v
=]
4o
U
[N
]
o3
Al
X U
0 .C
o
o
)
—~ 3
~ 0
LR
[N
U
Ww
S
o
@
H
)
o0
hal
I

,636 cfs

518

A-27



A- SPECIAL GAGE POINT
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Figure 10. Flood Stage Contours (in feet) in the Mobile Bay Delta
Region for a Flow Rate of 504,327 cfs,
(1 ft = 0.305m, 1 cfs = 0.028 m3/sec)



A- SPECIAL GAGE POINT

Figure 11. Fleood Stage Contours {in feet) in the Mobile Bay Delta Region
(without the L&N Railroad) for a Flow Rate of 518,636 cfs.
(1.ft = 0.305m, 1 cfs = 0.028 m3/sec)
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Figure 12.

A- SPECIAL GAGE POINT
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LEGEND :

A - LESS THAN Q1 FT

B - BETWEEN 01 AND 0.2 FT
C - BETWEEN 0.2 AND 0.3 FT
D -BETWEEN 0.3 AND 0.4 F¥
E - BETWEEN 0.4 AND 0.5 FT
F - BETWEEN 0.5 AND 075 FT
G -BETWEEN 0.75 AND 1.0 FT
H-BETWEEN 1.0 AND 1.25 FT

Differences in Flood Stage Elevations in the Mobile Bay
Delta Region as a3 Result of the L&N Railroad for a Flow
Rate of Approximately 510,000 cfs.

(1 ft = 0.305m, 1 cfs = 0.028 m3/sec)
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